main.rs 47.1 KB
Newer Older
1
use clap::{Parser, ValueEnum};
2
3
use nix::sys::signal::{self, Signal};
use nix::unistd::Pid;
4
use serde::Deserialize;
Nicolas Patry's avatar
Nicolas Patry committed
5
use std::env;
6
use std::ffi::OsString;
7
use std::io::{BufRead, BufReader, Lines};
8
use std::os::unix::process::{CommandExt, ExitStatusExt};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
9
use std::path::Path;
OlivierDehaene's avatar
OlivierDehaene committed
10
use std::process::{Child, Command, ExitStatus, Stdio};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
11
12
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::mpsc::TryRecvError;
13
use std::sync::{mpsc, Arc};
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14
15
16
17
use std::thread;
use std::thread::sleep;
use std::time::{Duration, Instant};
use std::{fs, io};
18
use tracing_subscriber::EnvFilter;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
19

20
21
mod env_runtime;

22
23
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Quantization {
24
    /// 4 bit quantization. Requires a specific AWQ quantized model:
25
    ///   https://hf.co/models?search=awq.
26
    /// Should replace GPTQ models wherever possible because of the better latency
27
28
29
30
31
32
    Awq,
    /// 8 bit quantization, doesn't require specific model.
    /// Should be a drop-in replacement to bitsandbytes with much better performance.
    /// Kernels are from https://github.com/NetEase-FuXi/EETQ.git
    Eetq,
    /// 4 bit quantization. Requires a specific GTPQ quantized model: https://hf.co/models?search=gptq.
33
    /// text-generation-inference will use exllama (faster) kernels wherever possible, and use
34
35
36
37
38
39
40
41
42
    /// triton kernel (wider support) when it's not.
    /// AWQ has faster kernels.
    Gptq,
    /// Bitsandbytes 8bit. Can be applied on any model, will cut the memory requirement in half,
    /// but it is known that the model will be much slower to run than the native f16.
    #[deprecated(
        since = "1.1.0",
        note = "Use `eetq` instead, which provides better latencies overall and is drop-in in most cases"
    )]
43
    Bitsandbytes,
44
45
    /// Bitsandbytes 4bit. Can be applied on any model, will cut the memory requirement by 4x,
    /// but it is known that the model will be much slower to run than the native f16.
Nicolas Patry's avatar
Nicolas Patry committed
46
    BitsandbytesNF4,
47
48
    /// Bitsandbytes 4bit. nf4 should be preferred in most cases but maybe this one has better
    /// perplexity performance for you model
Nicolas Patry's avatar
Nicolas Patry committed
49
    BitsandbytesFP4,
50
51
52
53
54
55
}

impl std::fmt::Display for Quantization {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
56
57
            #[allow(deprecated)]
            // Use `eetq` instead, which provides better latencies overall and is drop-in in most cases
58
59
60
            Quantization::Bitsandbytes => {
                write!(f, "bitsandbytes")
            }
Nicolas Patry's avatar
Nicolas Patry committed
61
62
63
64
65
66
            Quantization::BitsandbytesNF4 => {
                write!(f, "bitsandbytes-nf4")
            }
            Quantization::BitsandbytesFP4 => {
                write!(f, "bitsandbytes-fp4")
            }
67
68
69
            Quantization::Gptq => {
                write!(f, "gptq")
            }
70
71
72
            Quantization::Awq => {
                write!(f, "awq")
            }
73
74
75
            Quantization::Eetq => {
                write!(f, "eetq")
            }
76
77
78
79
        }
    }
}

80
81
82
#[derive(Clone, Copy, Debug, ValueEnum)]
enum Dtype {
    Float16,
83
    #[clap(name = "bfloat16")]
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
    BFloat16,
}

impl std::fmt::Display for Dtype {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            Dtype::Float16 => {
                write!(f, "float16")
            }
            Dtype::BFloat16 => {
                write!(f, "bfloat16")
            }
        }
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#[derive(Clone, Copy, Debug, ValueEnum)]
enum RopeScaling {
    Linear,
    Dynamic,
}

impl std::fmt::Display for RopeScaling {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // To keep in track with `server`.
        match self {
            RopeScaling::Linear => {
                write!(f, "linear")
            }
            RopeScaling::Dynamic => {
                write!(f, "dynamic")
            }
        }
    }
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
121
122
123
124
/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
125
126
127
128
129
    /// The name of the model to load.
    /// Can be a MODEL_ID as listed on <https://hf.co/models> like
    /// `gpt2` or `OpenAssistant/oasst-sft-1-pythia-12b`.
    /// Or it can be a local directory containing the necessary files
    /// as saved by `save_pretrained(...)` methods of transformers
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
130
    #[clap(default_value = "bigscience/bloom-560m", long, env)]
131
    model_id: String,
132
133
134

    /// The actual revision of the model if you're referring to a model
    /// on the hub. You can use a specific commit id or a branch like `refs/pr/2`.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
135
    #[clap(long, env)]
136
    revision: Option<String>,
137

138
139
140
141
142
    /// The number of tokenizer workers used for payload validation and truncation inside the
    /// router.
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,

143
    /// Whether to shard the model across multiple GPUs
144
145
    /// By default text-generation-inference will use all available GPUs to run
    /// the model. Setting it to `false` deactivates `num_shard`.
146
147
    #[clap(long, env)]
    sharded: Option<bool>,
148
149

    /// The number of shards to use if you don't want to use all GPUs on a given machine.
150
151
    /// You can use `CUDA_VISIBLE_DEVICES=0,1 text-generation-launcher... --num_shard 2`
    /// and `CUDA_VISIBLE_DEVICES=2,3 text-generation-launcher... --num_shard 2` to
152
    /// launch 2 copies with 2 shard each on a given machine with 4 GPUs for instance.
153
154
    #[clap(long, env)]
    num_shard: Option<usize>,
155

156
    /// Whether you want the model to be quantized.
157
158
    #[clap(long, env, value_enum)]
    quantize: Option<Quantization>,
159

Nicolas Patry's avatar
Nicolas Patry committed
160
161
162
163
164
165
166
    /// The number of input_ids to speculate on
    /// If using a medusa model, the heads will be picked up automatically
    /// Other wise, it will use n-gram speculation which is relatively free
    /// in terms of compute, but the speedup heavily depends on the task.
    #[clap(long, env)]
    speculate: Option<usize>,

167
168
169
170
    /// The dtype to be forced upon the model. This option cannot be used with `--quantize`.
    #[clap(long, env, value_enum)]
    dtype: Option<Dtype>,

171
172
173
174
175
176
    /// Whether you want to execute hub modelling code. Explicitly passing a `revision` is
    /// encouraged when loading a model with custom code to ensure no malicious code has been
    /// contributed in a newer revision.
    #[clap(long, env, value_enum)]
    trust_remote_code: bool,

177
178
179
    /// The maximum amount of concurrent requests for this particular deployment.
    /// Having a low limit will refuse clients requests instead of having them
    /// wait for too long and is usually good to handle backpressure correctly.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
180
181
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
182
183
184
185

    /// This is the maximum allowed value for clients to set `best_of`.
    /// Best of makes `n` generations at the same time, and return the best
    /// in terms of overall log probability over the entire generated sequence
186
187
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
188
189
190
191
192
193

    /// This is the maximum allowed value for clients to set `stop_sequences`.
    /// Stop sequences are used to allow the model to stop on more than just
    /// the EOS token, and enable more complex "prompting" where users can preprompt
    /// the model in a specific way and define their "own" stop token aligned with
    /// their prompt.
194
195
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
196

Nicolas Patry's avatar
Nicolas Patry committed
197
198
199
200
201
202
203
204
    /// This is the maximum allowed value for clients to set `top_n_tokens`.
    /// `top_n_tokens is used to return information about the the `n` most likely
    /// tokens at each generation step, instead of just the sampled token. This
    /// information can be used for downstream tasks like for classification or
    /// ranking.
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,

205
206
207
208
    /// This is the maximum allowed input length (expressed in number of tokens)
    /// for users. The larger this value, the longer prompt users can send which
    /// can impact the overall memory required to handle the load.
    /// Please note that some models have a finite range of sequence they can handle.
209
    #[clap(default_value = "1024", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
210
    max_input_length: usize,
211
212
213
214
215
216
217
218
219

    /// This is the most important value to set as it defines the "memory budget"
    /// of running clients requests.
    /// Clients will send input sequences and ask to generate `max_new_tokens`
    /// on top. with a value of `1512` users can send either a prompt of
    /// `1000` and ask for `512` new tokens, or send a prompt of `1` and ask for
    /// `1511` max_new_tokens.
    /// The larger this value, the larger amount each request will be in your RAM
    /// and the less effective batching can be.
220
    #[clap(default_value = "2048", long, env)]
221
    max_total_tokens: usize,
222
223
224
225
226
227
228
229
230
231
232

    /// This represents the ratio of waiting queries vs running queries where
    /// you want to start considering pausing the running queries to include the waiting
    /// ones into the same batch.
    /// `waiting_served_ratio=1.2` Means when 12 queries are waiting and there's
    /// only 10 queries left in the current batch we check if we can fit those 12
    /// waiting queries into the batching strategy, and if yes, then batching happens
    /// delaying the 10 running queries by a `prefill` run.
    ///
    /// This setting is only applied if there is room in the batch
    /// as defined by `max_batch_total_tokens`.
233
234
    #[clap(default_value = "1.2", long, env)]
    waiting_served_ratio: f32,
235

236
237
238
239
240
241
    /// Limits the number of tokens for the prefill operation.
    /// Since this operation take the most memory and is compute bound, it is interesting
    /// to limit the number of requests that can be sent.
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,

242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    /// **IMPORTANT** This is one critical control to allow maximum usage
    /// of the available hardware.
    ///
    /// This represents the total amount of potential tokens within a batch.
    /// When using padding (not recommended) this would be equivalent of
    /// `batch_size` * `max_total_tokens`.
    ///
    /// However in the non-padded (flash attention) version this can be much finer.
    ///
    /// For `max_batch_total_tokens=1000`, you could fit `10` queries of `total_tokens=100`
    /// or a single query of `1000` tokens.
    ///
    /// Overall this number should be the largest possible amount that fits the
    /// remaining memory (after the model is loaded). Since the actual memory overhead
    /// depends on other parameters like if you're using quantization, flash attention
    /// or the model implementation, text-generation-inference cannot infer this number
    /// automatically.
259
260
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278

    /// This setting defines how many tokens can be passed before forcing the waiting
    /// queries to be put on the batch (if the size of the batch allows for it).
    /// New queries require 1 `prefill` forward, which is different from `decode`
    /// and therefore you need to pause the running batch in order to run `prefill`
    /// to create the correct values for the waiting queries to be able to join the batch.
    ///
    /// With a value too small, queries will always "steal" the compute to run `prefill`
    /// and running queries will be delayed by a lot.
    ///
    /// With a value too big, waiting queries could wait for a very long time
    /// before being allowed a slot in the running batch. If your server is busy
    /// that means that requests that could run in ~2s on an empty server could
    /// end up running in ~20s because the query had to wait for 18s.
    ///
    /// This number is expressed in number of tokens to make it a bit more
    /// "model" agnostic, but what should really matter is the overall latency
    /// for end users.
279
280
    #[clap(default_value = "20", long, env)]
    max_waiting_tokens: usize,
281

282
283
284
285
286
    /// Enforce a maximum number of requests per batch
    /// Specific flag for hardware targets that do not support unpadded inference
    #[clap(long, env)]
    max_batch_size: Option<usize>,

287
288
289
290
291
292
293
294
295
    /// Specify the batch sizes to compute cuda graphs for.
    /// Use "0" to disable.
    #[clap(
        long,
        env,
        value_delimiter = ',',
        default_value = "1,2,4,8,16,32,64,96,128"
    )]
    cuda_graphs: Vec<usize>,
296

297
298
299
300
    /// The IP address to listen on
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,

301
    /// The port to listen on.
302
    #[clap(default_value = "3000", long, short, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
303
    port: u16,
304
305
306

    /// The name of the socket for gRPC communication between the webserver
    /// and the shards.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
307
308
    #[clap(default_value = "/tmp/text-generation-server", long, env)]
    shard_uds_path: String,
309
310

    /// The address the master shard will listen on. (setting used by torch distributed)
311
    #[clap(default_value = "localhost", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
312
    master_addr: String,
313
314

    /// The address the master port will listen on. (setting used by torch distributed)
315
    #[clap(default_value = "29500", long, env)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
316
    master_port: usize,
317
318
319

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
320
    #[clap(long, env)]
321
    huggingface_hub_cache: Option<String>,
322
323
324

    /// The location of the huggingface hub cache.
    /// Used to override the location if you want to provide a mounted disk for instance
325
326
    #[clap(long, env)]
    weights_cache_override: Option<String>,
327
328
329
330
331

    /// For some models (like bloom), text-generation-inference implemented custom
    /// cuda kernels to speed up inference. Those kernels were only tested on A100.
    /// Use this flag to disable them if you're running on different hardware and
    /// encounter issues.
332
    #[clap(long, env)]
333
    disable_custom_kernels: bool,
334

335
336
337
338
339
    /// Limit the CUDA available memory.
    /// The allowed value equals the total visible memory multiplied by cuda-memory-fraction.
    #[clap(default_value = "1.0", long, env)]
    cuda_memory_fraction: f32,

Nicolas Patry's avatar
Nicolas Patry committed
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    /// Rope scaling will only be used for RoPE models
    /// and allow rescaling the position rotary to accomodate for
    /// larger prompts.
    ///
    /// Goes together with `rope_factor`.
    ///
    /// `--rope-factor 2.0` gives linear scaling with a factor of 2.0
    /// `--rope-scaling dynamic` gives dynamic scaling with a factor of 1.0
    /// `--rope-scaling linear` gives linear scaling with a factor of 1.0 (Nothing will be changed
    /// basically)
    ///
    /// `--rope-scaling linear --rope-factor` fully describes the scaling you want
    #[clap(long, env)]
    rope_scaling: Option<RopeScaling>,

    /// Rope scaling will only be used for RoPE models
    /// See `rope_scaling`
    #[clap(long, env)]
    rope_factor: Option<f32>,

360
    /// Outputs the logs in JSON format (useful for telemetry)
361
    #[clap(long, env)]
362
    json_output: bool,
363

364
365
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
366

367
368
    #[clap(long, env)]
    cors_allow_origin: Vec<String>,
369
370
371
372
    #[clap(long, env)]
    watermark_gamma: Option<f32>,
    #[clap(long, env)]
    watermark_delta: Option<f32>,
373

374
375
376
377
378
379
380
381
    /// Enable ngrok tunneling
    #[clap(long, env)]
    ngrok: bool,

    /// ngrok authentication token
    #[clap(long, env)]
    ngrok_authtoken: Option<String>,

382
    /// ngrok edge
383
    #[clap(long, env)]
384
    ngrok_edge: Option<String>,
385

386
387
388
389
390
    /// The path to the tokenizer config file. This path is used to load the tokenizer configuration which may
    /// include a `chat_template`. If not provided, the default config will be used from the model hub.
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,

drbh's avatar
drbh committed
391
392
393
394
395
    /// Disable outlines grammar constrained generation.
    /// This is a feature that allows you to generate text that follows a specific grammar.
    #[clap(long, env)]
    disable_grammar_support: bool,

396
397
398
    /// Display a lot of information about your runtime environment
    #[clap(long, short, action)]
    env: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
399
400
}

401
402
403
#[derive(Debug)]
enum ShardStatus {
    Ready,
404
    Failed(usize),
405
}
406

407
408
409
410
#[allow(clippy::too_many_arguments)]
fn shard_manager(
    model_id: String,
    revision: Option<String>,
411
    quantize: Option<Quantization>,
Nicolas Patry's avatar
Nicolas Patry committed
412
    speculate: Option<usize>,
413
    dtype: Option<Dtype>,
414
    trust_remote_code: bool,
415
416
417
418
419
420
421
422
423
424
    uds_path: String,
    rank: usize,
    world_size: usize,
    master_addr: String,
    master_port: usize,
    huggingface_hub_cache: Option<String>,
    weights_cache_override: Option<String>,
    disable_custom_kernels: bool,
    watermark_gamma: Option<f32>,
    watermark_delta: Option<f32>,
425
    cuda_graphs: Vec<usize>,
426
    cuda_memory_fraction: f32,
Nicolas Patry's avatar
Nicolas Patry committed
427
428
    rope_scaling: Option<RopeScaling>,
    rope_factor: Option<f32>,
429
430
    otlp_endpoint: Option<String>,
    status_sender: mpsc::Sender<ShardStatus>,
431
    shutdown: Arc<AtomicBool>,
432
433
    _shutdown_sender: mpsc::Sender<()>,
) {
434
435
436
    // Enter shard-manager tracing span
    let _span = tracing::span!(tracing::Level::INFO, "shard-manager", rank = rank).entered();

437
438
439
440
    // Get UDS path
    let uds_string = format!("{uds_path}-{rank}");
    let uds = Path::new(&uds_string);
    // Clean previous runs
441
442
443
    if uds.exists() {
        fs::remove_file(uds).unwrap();
    }
444
445

    // Process args
OlivierDehaene's avatar
OlivierDehaene committed
446
    let mut shard_args = vec![
447
448
449
450
451
452
453
454
455
        "serve".to_string(),
        model_id,
        "--uds-path".to_string(),
        uds_path,
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];

456
457
    // Activate trust remote code
    if trust_remote_code {
OlivierDehaene's avatar
OlivierDehaene committed
458
        shard_args.push("--trust-remote-code".to_string());
459
460
    }

461
462
    // Activate tensor parallelism
    if world_size > 1 {
OlivierDehaene's avatar
OlivierDehaene committed
463
        shard_args.push("--sharded".to_string());
464
465
    }

466
    if let Some(quantize) = quantize {
OlivierDehaene's avatar
OlivierDehaene committed
467
468
        shard_args.push("--quantize".to_string());
        shard_args.push(quantize.to_string())
469
    }
470

Nicolas Patry's avatar
Nicolas Patry committed
471
472
473
474
475
    if let Some(speculate) = speculate {
        shard_args.push("--speculate".to_string());
        shard_args.push(speculate.to_string())
    }

476
    if let Some(dtype) = dtype {
OlivierDehaene's avatar
OlivierDehaene committed
477
478
        shard_args.push("--dtype".to_string());
        shard_args.push(dtype.to_string())
479
480
    }

481
482
    // Model optional revision
    if let Some(revision) = revision {
OlivierDehaene's avatar
OlivierDehaene committed
483
484
        shard_args.push("--revision".to_string());
        shard_args.push(revision)
485
    }
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
486

Nicolas Patry's avatar
Nicolas Patry committed
487
488
489
490
491
492
    let rope = match (rope_scaling, rope_factor) {
        (None, None) => None,
        (Some(scaling), None) => Some((scaling, 1.0)),
        (Some(scaling), Some(factor)) => Some((scaling, factor)),
        (None, Some(factor)) => Some((RopeScaling::Linear, factor)),
    };
493
494
    // OpenTelemetry
    if let Some(otlp_endpoint) = otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
495
496
        shard_args.push("--otlp-endpoint".to_string());
        shard_args.push(otlp_endpoint);
497
498
499
    }

    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
500
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
501
502

    // Torch Distributed Env vars
OlivierDehaene's avatar
OlivierDehaene committed
503
504
505
506
    envs.push(("RANK".into(), rank.to_string().into()));
    envs.push(("WORLD_SIZE".into(), world_size.to_string().into()));
    envs.push(("MASTER_ADDR".into(), master_addr.into()));
    envs.push(("MASTER_PORT".into(), master_port.to_string().into()));
507
    envs.push(("TORCH_NCCL_AVOID_RECORD_STREAMS".into(), "1".into()));
508

509
510
511
512
513
514
    // CUDA memory fraction
    envs.push((
        "CUDA_MEMORY_FRACTION".into(),
        cuda_memory_fraction.to_string().into(),
    ));

515
    // Safetensors load fast
OlivierDehaene's avatar
OlivierDehaene committed
516
    envs.push(("SAFETENSORS_FAST_GPU".into(), "1".into()));
517

518
519
520
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

521
522
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
523
    envs.push((
524
525
526
527
528
529
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));

    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
530
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
531
532
    };

Nicolas Patry's avatar
Nicolas Patry committed
533
534
535
536
537
538
539
540
541
    // Detect rope scaling
    // Sending as env instead of CLI args to not bloat everything
    // those only can be used by RoPE models, so passing information around
    // for all models will complexify code unnecessarily
    if let Some((scaling, factor)) = rope {
        envs.push(("ROPE_SCALING".into(), scaling.to_string().into()));
        envs.push(("ROPE_FACTOR".into(), factor.to_string().into()));
    }

542
543
544
    // If huggingface_hub_cache is some, pass it to the shard
    // Useful when running inside a docker container
    if let Some(huggingface_hub_cache) = huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
545
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
546
547
548
549
550
    };

    // If weights_cache_override is some, pass it to the shard
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
551
        envs.push((
552
553
554
555
556
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

557
    // Enable experimental support for cuda graphs
558
559
560
561
562
563
564
565
566
567
    if !cuda_graphs.is_empty() {
        envs.push((
            "CUDA_GRAPHS".into(),
            cuda_graphs
                .into_iter()
                .map(|c| c.to_string())
                .collect::<Vec<_>>()
                .join(",")
                .into(),
        ));
568
569
    }

570
571
    // If disable_custom_kernels is true, pass it to the shard as an env var
    if disable_custom_kernels {
OlivierDehaene's avatar
OlivierDehaene committed
572
        envs.push(("DISABLE_CUSTOM_KERNELS".into(), "True".into()))
573
574
575
576
    }

    // Watermark Gamma
    if let Some(watermark_gamma) = watermark_gamma {
OlivierDehaene's avatar
OlivierDehaene committed
577
        envs.push(("WATERMARK_GAMMA".into(), watermark_gamma.to_string().into()))
578
579
580
581
    }

    // Watermark Delta
    if let Some(watermark_delta) = watermark_delta {
OlivierDehaene's avatar
OlivierDehaene committed
582
        envs.push(("WATERMARK_DELTA".into(), watermark_delta.to_string().into()))
583
584
585
    }

    // Start process
586
    tracing::info!("Starting shard");
587
    let mut p = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
588
589
        .args(shard_args)
        .envs(envs)
590
591
592
593
594
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
595
596
        Ok(p) => p,
        Err(err) => {
597
598
599
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
600
601
            }
            {
602
                tracing::error!("{}", err);
603
            }
604

605
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
606
607
608
609
610
            return;
        }
    };

    // Redirect STDOUT to the console
611
    let shard_stdout_reader = BufReader::new(p.stdout.take().unwrap());
612
    let shard_stderr_reader = BufReader::new(p.stderr.take().unwrap());
613

614
    //stdout tracing thread
615
    thread::spawn(move || {
616
        log_lines(shard_stdout_reader.lines());
617
    });
618
619
620
    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
621
        for line in shard_stderr_reader.lines().map_while(Result::ok) {
622
623
624
            err_sender.send(line).unwrap_or(());
        }
    });
625
626
627
628
629
630

    let mut ready = false;
    let start_time = Instant::now();
    let mut wait_time = Instant::now();
    loop {
        // Process exited
631
        if let Some(exit_status) = p.try_wait().unwrap() {
632
633
634
635
            let mut err = String::new();
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }
636

637
            tracing::error!("Shard complete standard error output:\n{err}");
638

639
            if let Some(signal) = exit_status.signal() {
640
641
642
                tracing::error!("Shard process was signaled to shutdown with signal {signal}");
            }

643
            status_sender.send(ShardStatus::Failed(rank)).unwrap();
644
645
646
647
            return;
        }

        // We received a shutdown signal
648
        if shutdown.load(Ordering::SeqCst) {
649
            p.kill().unwrap();
650
            let _ = p.wait();
651
            tracing::info!("Shard terminated");
652
653
654
655
656
            return;
        }

        // Shard is ready
        if uds.exists() && !ready {
657
            tracing::info!("Shard ready in {:?}", start_time.elapsed());
658
659
660
            status_sender.send(ShardStatus::Ready).unwrap();
            ready = true;
        } else if !ready && wait_time.elapsed() > Duration::from_secs(10) {
661
            tracing::info!("Waiting for shard to be ready...");
662
663
664
665
666
667
            wait_time = Instant::now();
        }
        sleep(Duration::from_millis(100));
    }
}

668
fn shutdown_shards(shutdown: Arc<AtomicBool>, shutdown_receiver: &mpsc::Receiver<()>) {
669
670
671
    tracing::info!("Shutting down shards");
    // Update shutdown value to true
    // This will be picked up by the shard manager
672
    shutdown.store(true, Ordering::SeqCst);
673
674
675
676
677
678
679

    // Wait for shards to shutdown
    // This will block till all shutdown_sender are dropped
    let _ = shutdown_receiver.recv();
}

fn num_cuda_devices() -> Option<usize> {
680
681
682
683
    let devices = match env::var("CUDA_VISIBLE_DEVICES") {
        Ok(devices) => devices,
        Err(_) => env::var("NVIDIA_VISIBLE_DEVICES").ok()?,
    };
684
685
    let n_devices = devices.split(',').count();
    Some(n_devices)
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
}

#[derive(Deserialize)]
#[serde(rename_all = "UPPERCASE")]
enum PythonLogLevelEnum {
    Trace,
    Debug,
    Info,
    Success,
    Warning,
    Error,
    Critical,
}

#[derive(Deserialize)]
struct PythonLogLevel {
    name: PythonLogLevelEnum,
}

#[derive(Deserialize)]
struct PythonLogRecord {
    level: PythonLogLevel,
}

#[derive(Deserialize)]
struct PythonLogMessage {
    text: String,
    record: PythonLogRecord,
}

impl PythonLogMessage {
    fn trace(&self) {
        match self.record.level.name {
            PythonLogLevelEnum::Trace => tracing::trace!("{}", self.text),
            PythonLogLevelEnum::Debug => tracing::debug!("{}", self.text),
            PythonLogLevelEnum::Info => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Success => tracing::info!("{}", self.text),
            PythonLogLevelEnum::Warning => tracing::warn!("{}", self.text),
            PythonLogLevelEnum::Error => tracing::error!("{}", self.text),
            PythonLogLevelEnum::Critical => tracing::error!("{}", self.text),
        }
    }
}

730
731
732
733
734
735
736
737
738
impl TryFrom<&String> for PythonLogMessage {
    type Error = serde_json::Error;

    fn try_from(value: &String) -> Result<Self, Self::Error> {
        serde_json::from_str::<Self>(value)
    }
}

fn log_lines<S: Sized + BufRead>(lines: Lines<S>) {
OlivierDehaene's avatar
OlivierDehaene committed
739
    for line in lines.map_while(Result::ok) {
740
741
742
743
744
745
746
        match PythonLogMessage::try_from(&line) {
            Ok(log) => log.trace(),
            Err(_) => tracing::debug!("{line}"),
        }
    }
}

747
748
749
750
fn find_num_shards(
    sharded: Option<bool>,
    num_shard: Option<usize>,
) -> Result<usize, LauncherError> {
751
752
753
754
    // get the number of shards given `sharded` and `num_shard`
    let num_shard = match (sharded, num_shard) {
        (Some(true), None) => {
            // try to default to the number of available GPUs
755
756
757
            tracing::info!("Parsing num_shard from CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES");
            let n_devices = num_cuda_devices()
                .expect("--num-shard and CUDA_VISIBLE_DEVICES/NVIDIA_VISIBLE_DEVICES are not set");
758
            if n_devices <= 1 {
759
760
761
                return Err(LauncherError::NotEnoughCUDADevices(format!(
                    "`sharded` is true but only found {n_devices} CUDA devices"
                )));
762
            }
763
            n_devices
764
        }
765
766
767
        (Some(true), Some(num_shard)) => {
            // we can't have only one shard while sharded
            if num_shard <= 1 {
768
769
770
                return Err(LauncherError::ArgumentValidation(
                    "`sharded` is true but `num_shard` <= 1".to_string(),
                ));
771
772
            }
            num_shard
773
        }
774
775
776
777
        (Some(false), Some(num_shard)) => num_shard,
        (Some(false), None) => 1,
        (None, None) => num_cuda_devices().unwrap_or(1),
        (None, Some(num_shard)) => num_shard,
778
    };
779
    if num_shard < 1 {
780
781
782
        return Err(LauncherError::ArgumentValidation(
            "`num_shard` cannot be < 1".to_string(),
        ));
783
    }
784
    Ok(num_shard)
785
}
786

787
788
#[derive(Debug)]
enum LauncherError {
789
790
    ArgumentValidation(String),
    NotEnoughCUDADevices(String),
791
792
793
794
795
796
797
    DownloadError,
    ShardCannotStart,
    ShardDisconnected,
    ShardFailed,
    WebserverFailed,
    WebserverCannotStart,
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
798

799
fn download_convert_model(args: &Args, running: Arc<AtomicBool>) -> Result<(), LauncherError> {
800
801
802
    // Enter download tracing span
    let _span = tracing::span!(tracing::Level::INFO, "download").entered();

OlivierDehaene's avatar
OlivierDehaene committed
803
    let mut download_args = vec![
804
805
806
807
808
809
810
811
        "download-weights".to_string(),
        args.model_id.to_string(),
        "--extension".to_string(),
        ".safetensors".to_string(),
        "--logger-level".to_string(),
        "INFO".to_string(),
        "--json-output".to_string(),
    ];
812

813
814
    // Model optional revision
    if let Some(revision) = &args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
815
816
        download_args.push("--revision".to_string());
        download_args.push(revision.to_string())
817
    }
818

819
820
821
822
823
    // Trust remote code for automatic peft fusion
    if args.trust_remote_code {
        download_args.push("--trust-remote-code".to_string());
    }

824
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
825
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
826

827
828
829
    // Disable progress bar
    envs.push(("HF_HUB_DISABLE_PROGRESS_BARS".into(), "1".into()));

830
    // If huggingface_hub_cache is set, pass it to the download process
831
832
    // Useful when running inside a docker container
    if let Some(ref huggingface_hub_cache) = args.huggingface_hub_cache {
OlivierDehaene's avatar
OlivierDehaene committed
833
        envs.push(("HUGGINGFACE_HUB_CACHE".into(), huggingface_hub_cache.into()));
834
    };
835

836
837
    // Enable hf transfer for insane download speeds
    let enable_hf_transfer = env::var("HF_HUB_ENABLE_HF_TRANSFER").unwrap_or("1".to_string());
OlivierDehaene's avatar
OlivierDehaene committed
838
    envs.push((
839
840
841
        "HF_HUB_ENABLE_HF_TRANSFER".into(),
        enable_hf_transfer.into(),
    ));
842

843
844
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
845
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
846
    };
847

848
849
850
    // If args.weights_cache_override is some, pass it to the download process
    // Useful when running inside a HuggingFace Inference Endpoint
    if let Some(weights_cache_override) = &args.weights_cache_override {
OlivierDehaene's avatar
OlivierDehaene committed
851
        envs.push((
852
853
854
855
856
            "WEIGHTS_CACHE_OVERRIDE".into(),
            weights_cache_override.into(),
        ));
    };

857
858
    // Start process
    tracing::info!("Starting download process.");
859
    let mut download_process = match Command::new("text-generation-server")
OlivierDehaene's avatar
OlivierDehaene committed
860
861
        .args(download_args)
        .envs(envs)
862
863
864
865
866
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
867
868
        Ok(p) => p,
        Err(err) => {
869
870
871
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-server not found in PATH");
                tracing::error!("Please install it with `make install-server`")
872
873
            } else {
                tracing::error!("{}", err);
874
            }
875

876
877
878
            return Err(LauncherError::DownloadError);
        }
    };
879

880
    let download_stdout = BufReader::new(download_process.stdout.take().unwrap());
881

882
    thread::spawn(move || {
883
884
885
886
887
888
889
890
        log_lines(download_stdout.lines());
    });

    let download_stderr = BufReader::new(download_process.stderr.take().unwrap());

    // We read stderr in another thread as it seems that lines() can block in some cases
    let (err_sender, err_receiver) = mpsc::channel();
    thread::spawn(move || {
OlivierDehaene's avatar
OlivierDehaene committed
891
        for line in download_stderr.lines().map_while(Result::ok) {
892
893
            err_sender.send(line).unwrap_or(());
        }
894
    });
895

896
    loop {
897
898
899
900
        if let Some(status) = download_process.try_wait().unwrap() {
            if status.success() {
                tracing::info!("Successfully downloaded weights.");
                break;
901
            }
902
903

            let mut err = String::new();
904
905
906
907
            while let Ok(line) = err_receiver.recv_timeout(Duration::from_millis(10)) {
                err = err + "\n" + &line;
            }

908
909
910
911
912
913
914
915
916
            if let Some(signal) = status.signal() {
                tracing::error!(
                    "Download process was signaled to shutdown with signal {signal}: {err}"
                );
            } else {
                tracing::error!("Download encountered an error: {err}");
            }

            return Err(LauncherError::DownloadError);
917
        }
918
        if !running.load(Ordering::SeqCst) {
OlivierDehaene's avatar
OlivierDehaene committed
919
            terminate("download", download_process, Duration::from_secs(10)).unwrap();
920
921
922
            return Ok(());
        }
        sleep(Duration::from_millis(100));
923
    }
924
925
    Ok(())
}
926

927
#[allow(clippy::too_many_arguments)]
928
929
930
fn spawn_shards(
    num_shard: usize,
    args: &Args,
931
    shutdown: Arc<AtomicBool>,
932
933
934
935
936
937
    shutdown_receiver: &mpsc::Receiver<()>,
    shutdown_sender: mpsc::Sender<()>,
    status_receiver: &mpsc::Receiver<ShardStatus>,
    status_sender: mpsc::Sender<ShardStatus>,
    running: Arc<AtomicBool>,
) -> Result<(), LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
938
939
    // Start shard processes
    for rank in 0..num_shard {
940
941
942
943
944
945
        let model_id = args.model_id.clone();
        let revision = args.revision.clone();
        let uds_path = args.shard_uds_path.clone();
        let master_addr = args.master_addr.clone();
        let huggingface_hub_cache = args.huggingface_hub_cache.clone();
        let weights_cache_override = args.weights_cache_override.clone();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
946
947
948
        let status_sender = status_sender.clone();
        let shutdown = shutdown.clone();
        let shutdown_sender = shutdown_sender.clone();
949
        let otlp_endpoint = args.otlp_endpoint.clone();
950
        let quantize = args.quantize;
Nicolas Patry's avatar
Nicolas Patry committed
951
        let speculate = args.speculate;
952
        let dtype = args.dtype;
953
        let trust_remote_code = args.trust_remote_code;
954
955
956
957
        let master_port = args.master_port;
        let disable_custom_kernels = args.disable_custom_kernels;
        let watermark_gamma = args.watermark_gamma;
        let watermark_delta = args.watermark_delta;
958
959
960
961
962
        let cuda_graphs: Vec<usize> = args
            .cuda_graphs
            .iter()
            .filter_map(|&c| if c > 0 { Some(c) } else { None })
            .collect();
963
        let cuda_memory_fraction = args.cuda_memory_fraction;
Nicolas Patry's avatar
Nicolas Patry committed
964
965
        let rope_scaling = args.rope_scaling;
        let rope_factor = args.rope_factor;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
966
967
        thread::spawn(move || {
            shard_manager(
968
                model_id,
969
                revision,
970
                quantize,
Nicolas Patry's avatar
Nicolas Patry committed
971
                speculate,
972
                dtype,
973
                trust_remote_code,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
974
975
976
977
978
                uds_path,
                rank,
                num_shard,
                master_addr,
                master_port,
979
980
                huggingface_hub_cache,
                weights_cache_override,
981
                disable_custom_kernels,
982
983
                watermark_gamma,
                watermark_delta,
984
                cuda_graphs,
985
                cuda_memory_fraction,
Nicolas Patry's avatar
Nicolas Patry committed
986
987
                rope_scaling,
                rope_factor,
988
                otlp_endpoint,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
                status_sender,
                shutdown,
                shutdown_sender,
            )
        });
    }
    drop(shutdown_sender);

    // Wait for shard to start
    let mut shard_ready = 0;
    while running.load(Ordering::SeqCst) {
        match status_receiver.try_recv() {
            Ok(ShardStatus::Ready) => {
                shard_ready += 1;
                if shard_ready == num_shard {
                    break;
                }
            }
            Err(TryRecvError::Empty) => {
                sleep(Duration::from_millis(100));
            }
1010
            Ok(ShardStatus::Failed(rank)) => {
1011
                tracing::error!("Shard {rank} failed to start");
1012
                shutdown_shards(shutdown, shutdown_receiver);
1013
                return Err(LauncherError::ShardCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1014
1015
1016
            }
            Err(TryRecvError::Disconnected) => {
                tracing::error!("Shard status channel disconnected");
1017
                shutdown_shards(shutdown, shutdown_receiver);
1018
                return Err(LauncherError::ShardDisconnected);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1019
1020
1021
            }
        }
    }
1022
1023
    Ok(())
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1024

1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
fn compute_type(num_shard: usize) -> Option<String> {
    let output = Command::new("nvidia-smi")
        .args(["--query-gpu=gpu_name", "--format=csv"])
        .output()
        .ok()?;
    let output = String::from_utf8(output.stdout).ok()?;
    let fullname = output.split('\n').nth(1)?;
    let cardname = fullname.replace(' ', "-").to_lowercase();
    let compute_type = format!("{num_shard}-{cardname}");
    Some(compute_type)
}

1037
fn spawn_webserver(
1038
    num_shard: usize,
1039
    args: Args,
1040
    shutdown: Arc<AtomicBool>,
1041
    shutdown_receiver: &mpsc::Receiver<()>,
1042
) -> Result<Child, LauncherError> {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1043
1044
1045
    // All shard started
    // Start webserver
    tracing::info!("Starting Webserver");
OlivierDehaene's avatar
OlivierDehaene committed
1046
    let mut router_args = vec![
1047
        "--max-concurrent-requests".to_string(),
1048
        args.max_concurrent_requests.to_string(),
1049
        "--max-best-of".to_string(),
1050
        args.max_best_of.to_string(),
1051
        "--max-stop-sequences".to_string(),
1052
        args.max_stop_sequences.to_string(),
Nicolas Patry's avatar
Nicolas Patry committed
1053
1054
        "--max-top-n-tokens".to_string(),
        args.max_top_n_tokens.to_string(),
1055
        "--max-input-length".to_string(),
1056
        args.max_input_length.to_string(),
1057
        "--max-total-tokens".to_string(),
1058
        args.max_total_tokens.to_string(),
1059
1060
        "--max-batch-prefill-tokens".to_string(),
        args.max_batch_prefill_tokens.to_string(),
1061
        "--waiting-served-ratio".to_string(),
1062
        args.waiting_served_ratio.to_string(),
1063
        "--max-waiting-tokens".to_string(),
1064
        args.max_waiting_tokens.to_string(),
1065
1066
        "--validation-workers".to_string(),
        args.validation_workers.to_string(),
1067
1068
        "--hostname".to_string(),
        args.hostname.to_string(),
1069
        "--port".to_string(),
1070
        args.port.to_string(),
1071
        "--master-shard-uds-path".to_string(),
1072
        format!("{}-0", args.shard_uds_path),
1073
        "--tokenizer-name".to_string(),
1074
        args.model_id,
1075
1076
    ];

drbh's avatar
drbh committed
1077
1078
1079
1080
1081
    // Grammar support
    if args.disable_grammar_support {
        router_args.push("--disable-grammar-support".to_string());
    }

1082
1083
1084
1085
1086
1087
    // Tokenizer config path
    if let Some(ref tokenizer_config_path) = args.tokenizer_config_path {
        router_args.push("--tokenizer-config-path".to_string());
        router_args.push(tokenizer_config_path.to_string());
    }

1088
1089
1090
1091
1092
1093
    // Model optional max batch total tokens
    if let Some(max_batch_total_tokens) = args.max_batch_total_tokens {
        router_args.push("--max-batch-total-tokens".to_string());
        router_args.push(max_batch_total_tokens.to_string());
    }

1094
1095
1096
1097
1098
1099
    // Router optional max batch size
    if let Some(max_batch_size) = args.max_batch_size {
        router_args.push("--max-batch-size".to_string());
        router_args.push(max_batch_size.to_string());
    }

1100
1101
    // Model optional revision
    if let Some(ref revision) = args.revision {
OlivierDehaene's avatar
OlivierDehaene committed
1102
1103
        router_args.push("--revision".to_string());
        router_args.push(revision.to_string())
1104
1105
    }

1106
    if args.json_output {
OlivierDehaene's avatar
OlivierDehaene committed
1107
        router_args.push("--json-output".to_string());
1108
1109
    }

1110
    // OpenTelemetry
1111
    if let Some(otlp_endpoint) = args.otlp_endpoint {
OlivierDehaene's avatar
OlivierDehaene committed
1112
1113
        router_args.push("--otlp-endpoint".to_string());
        router_args.push(otlp_endpoint);
1114
1115
1116
1117
    }

    // CORS origins
    for origin in args.cors_allow_origin.into_iter() {
OlivierDehaene's avatar
OlivierDehaene committed
1118
1119
        router_args.push("--cors-allow-origin".to_string());
        router_args.push(origin);
1120
1121
    }

1122
1123
    // Ngrok
    if args.ngrok {
OlivierDehaene's avatar
OlivierDehaene committed
1124
1125
        router_args.push("--ngrok".to_string());
        router_args.push("--ngrok-authtoken".to_string());
1126
1127
1128
        router_args.push(args.ngrok_authtoken.unwrap());
        router_args.push("--ngrok-edge".to_string());
        router_args.push(args.ngrok_edge.unwrap());
1129
1130
    }

1131
    // Copy current process env
OlivierDehaene's avatar
OlivierDehaene committed
1132
    let mut envs: Vec<(OsString, OsString)> = env::vars_os().collect();
1133

1134
1135
    // Parse Inference API token
    if let Ok(api_token) = env::var("HF_API_TOKEN") {
OlivierDehaene's avatar
OlivierDehaene committed
1136
        envs.push(("HUGGING_FACE_HUB_TOKEN".into(), api_token.into()))
1137
    };
1138

1139
1140
1141
1142
1143
1144
1145
    // Parse Compute type
    if let Ok(compute_type) = env::var("COMPUTE_TYPE") {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    } else if let Some(compute_type) = compute_type(num_shard) {
        envs.push(("COMPUTE_TYPE".into(), compute_type.into()))
    }

1146
    let mut webserver = match Command::new("text-generation-router")
OlivierDehaene's avatar
OlivierDehaene committed
1147
1148
        .args(router_args)
        .envs(envs)
1149
1150
1151
1152
1153
        .stdout(Stdio::piped())
        .stderr(Stdio::piped())
        .process_group(0)
        .spawn()
    {
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1154
1155
        Ok(p) => p,
        Err(err) => {
1156
            tracing::error!("Failed to start webserver: {}", err);
1157
1158
1159
            if err.kind() == io::ErrorKind::NotFound {
                tracing::error!("text-generation-router not found in PATH");
                tracing::error!("Please install it with `make install-router`")
1160
1161
            } else {
                tracing::error!("{}", err);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1162
            }
1163

1164
            shutdown_shards(shutdown, shutdown_receiver);
1165
            return Err(LauncherError::WebserverCannotStart);
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1166
1167
1168
        }
    };

1169
1170
1171
    // Redirect STDOUT and STDERR to the console
    let webserver_stdout = webserver.stdout.take().unwrap();
    let webserver_stderr = webserver.stderr.take().unwrap();
1172
1173

    thread::spawn(move || {
1174
1175
        let stdout = BufReader::new(webserver_stdout);
        let stderr = BufReader::new(webserver_stderr);
1176
        for line in stdout.lines() {
1177
            println!("{}", line.unwrap());
1178
        }
1179
1180
        for line in stderr.lines() {
            println!("{}", line.unwrap());
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1181
        }
1182
1183
1184
    });
    Ok(webserver)
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1185

OlivierDehaene's avatar
OlivierDehaene committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
fn terminate(process_name: &str, mut process: Child, timeout: Duration) -> io::Result<ExitStatus> {
    tracing::info!("Terminating {process_name}");

    let terminate_time = Instant::now();
    signal::kill(Pid::from_raw(process.id() as i32), Signal::SIGTERM).unwrap();

    tracing::info!("Waiting for {process_name} to gracefully shutdown");

    while terminate_time.elapsed() < timeout {
        if let Some(status) = process.try_wait()? {
            tracing::info!("{process_name} terminated");
            return Ok(status);
        }
        sleep(Duration::from_millis(100));
    }

    tracing::info!("Killing {process_name}");

    process.kill()?;
    let exit_status = process.wait()?;

    tracing::info!("{process_name} killed");
    Ok(exit_status)
}

1211
fn main() -> Result<(), LauncherError> {
oOraph's avatar
oOraph committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    match Command::new("ldconfig").spawn() {
        Ok(_) => {}
        Err(err) => {
            tracing::warn!(
                "Unable to refresh ldconfig cache. Skipping (useless in most cases). Details {:?}",
                err
            )
        }
    }

1222
    // Pattern match configuration
1223
    let args: Args = Args::parse();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1224

1225
1226
1227
1228
    // Filter events with LOG_LEVEL
    let env_filter =
        EnvFilter::try_from_env("LOG_LEVEL").unwrap_or_else(|_| EnvFilter::new("info"));

1229
    if args.json_output {
1230
1231
1232
1233
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .json()
            .init();
1234
    } else {
1235
1236
1237
1238
        tracing_subscriber::fmt()
            .with_env_filter(env_filter)
            .compact()
            .init();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1239
1240
    }

1241
1242
1243
1244
1245
    if args.env {
        let env_runtime = env_runtime::Env::new();
        tracing::info!("{}", env_runtime);
    }

1246
1247
    tracing::info!("{:?}", args);

1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
    // Validate args
    if args.max_input_length >= args.max_total_tokens {
        return Err(LauncherError::ArgumentValidation(
            "`max_input_length` must be < `max_total_tokens`".to_string(),
        ));
    }
    if args.max_input_length as u32 > args.max_batch_prefill_tokens {
        return Err(LauncherError::ArgumentValidation(format!(
            "`max_batch_prefill_tokens` must be >= `max_input_length`. Given: {} and {}",
            args.max_batch_prefill_tokens, args.max_input_length
        )));
    }
1260

1261
1262
1263
1264
1265
    if args.validation_workers == 0 {
        return Err(LauncherError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }
1266
1267
1268
1269
1270
1271
    if args.trust_remote_code {
        tracing::warn!(
            "`trust_remote_code` is set. Trusting that model `{}` do not contain malicious code.",
            args.model_id
        );
    }
1272
1273

    let num_shard = find_num_shards(args.sharded, args.num_shard)?;
1274
1275
    if num_shard > 1 {
        tracing::info!("Sharding model on {num_shard} processes");
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1276
1277
    }

1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    if let Some(ref max_batch_total_tokens) = args.max_batch_total_tokens {
        if args.max_batch_prefill_tokens > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_batch_prefill_tokens, max_batch_total_tokens
            )));
        }
        if args.max_total_tokens as u32 > *max_batch_total_tokens {
            return Err(LauncherError::ArgumentValidation(format!(
                "`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {} and {}",
                args.max_total_tokens, max_batch_total_tokens
            )));
        }
    }

1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
    if args.ngrok {
        if args.ngrok_authtoken.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-authtoken` must be set when using ngrok tunneling".to_string(),
            ));
        }

        if args.ngrok_edge.is_none() {
            return Err(LauncherError::ArgumentValidation(
                "`ngrok-edge` must be set when using ngrok tunneling".to_string(),
            ));
        }
    }

1307
1308
1309
1310
1311
1312
1313
    // Signal handler
    let running = Arc::new(AtomicBool::new(true));
    let r = running.clone();
    ctrlc::set_handler(move || {
        r.store(false, Ordering::SeqCst);
    })
    .expect("Error setting Ctrl-C handler");
1314

1315
    // Download and convert model weights
1316
    download_convert_model(&args, running.clone())?;
1317

OlivierDehaene's avatar
OlivierDehaene committed
1318
1319
1320
1321
1322
    if !running.load(Ordering::SeqCst) {
        // Launcher was asked to stop
        return Ok(());
    }

1323
    // Shared shutdown bool
1324
    let shutdown = Arc::new(AtomicBool::new(false));
1325
1326
1327
    // Shared shutdown channel
    // When shutting down, the main thread will wait for all senders to be dropped
    let (shutdown_sender, shutdown_receiver) = mpsc::channel();
1328

1329
1330
    // Shared channel to track shard status
    let (status_sender, status_receiver) = mpsc::channel();
1331

1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
    spawn_shards(
        num_shard,
        &args,
        shutdown.clone(),
        &shutdown_receiver,
        shutdown_sender,
        &status_receiver,
        status_sender,
        running.clone(),
    )?;
1342

1343
1344
1345
1346
1347
    // We might have received a termination signal
    if !running.load(Ordering::SeqCst) {
        shutdown_shards(shutdown, &shutdown_receiver);
        return Ok(());
    }
1348

1349
1350
    let mut webserver = spawn_webserver(num_shard, args, shutdown.clone(), &shutdown_receiver)
        .map_err(|err| {
OlivierDehaene's avatar
OlivierDehaene committed
1351
1352
1353
            shutdown_shards(shutdown.clone(), &shutdown_receiver);
            err
        })?;
1354
1355
1356
1357
1358

    // Default exit code
    let mut exit_code = Ok(());

    while running.load(Ordering::SeqCst) {
1359
        if let Ok(ShardStatus::Failed(rank)) = status_receiver.try_recv() {
OlivierDehaene's avatar
OlivierDehaene committed
1360
            tracing::error!("Shard {rank} crashed");
1361
1362
1363
1364
            exit_code = Err(LauncherError::ShardFailed);
            break;
        };

1365
        match webserver.try_wait().unwrap() {
1366
1367
1368
1369
1370
1371
1372
1373
1374
            Some(_) => {
                tracing::error!("Webserver Crashed");
                shutdown_shards(shutdown, &shutdown_receiver);
                return Err(LauncherError::WebserverFailed);
            }
            None => {
                sleep(Duration::from_millis(100));
            }
        };
1375
    }
1376
1377

    // Graceful termination
OlivierDehaene's avatar
OlivierDehaene committed
1378
    terminate("webserver", webserver, Duration::from_secs(90)).unwrap();
1379
1380
1381
    shutdown_shards(shutdown, &shutdown_receiver);

    exit_code
1382
}