lib.rs 43.3 KB
Newer Older
1
/// Text Generation Inference Webserver
OlivierDehaene's avatar
OlivierDehaene committed
2
pub mod config;
3
mod infer;
Olivier Dehaene's avatar
Olivier Dehaene committed
4
pub mod server;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
5
mod validation;
Olivier Dehaene's avatar
Olivier Dehaene committed
6

7
8
9
#[cfg(feature = "kserve")]
mod kserve;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
10
use serde::{Deserialize, Serialize};
Nicolas Patry's avatar
Nicolas Patry committed
11
use tracing::warn;
12
use utoipa::ToSchema;
Olivier Dehaene's avatar
Olivier Dehaene committed
13
use validation::Validation;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
14

drbh's avatar
drbh committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#[derive(Clone, Deserialize, ToSchema)]
pub(crate) struct VertexInstance {
    #[schema(example = "What is Deep Learning?")]
    pub inputs: String,
    #[schema(nullable = true, default = "null", example = "null")]
    pub parameters: Option<GenerateParameters>,
}

#[derive(Deserialize, ToSchema)]
pub(crate) struct VertexRequest {
    #[serde(rename = "instances")]
    pub instances: Vec<VertexInstance>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct VertexResponse {
    pub predictions: Vec<String>,
}

34
35
/// Hub type
#[derive(Clone, Debug, Deserialize)]
36
pub struct HubModelInfo {
37
38
39
40
41
42
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

43
44
45
46
47
48
49
50
51
52
53
54
55
56
#[derive(Debug, Clone, Deserialize, PartialEq)]
pub struct ChatTemplate {
    name: String,
    template: String,
}

#[derive(Debug, Clone, Deserialize, PartialEq)]
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

#[derive(Debug, Clone, Deserialize, Default)]
57
pub struct HubTokenizerConfig {
58
    pub chat_template: Option<ChatTemplateVersions>,
59
    pub completion_template: Option<String>,
60
    #[serde(deserialize_with = "token_serde::deserialize")]
61
    pub bos_token: Option<String>,
62
    #[serde(deserialize_with = "token_serde::deserialize")]
63
    pub eos_token: Option<String>,
64
65
66
}

impl HubTokenizerConfig {
67
68
69
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
70
71
72
    }
}

drbh's avatar
drbh committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

87
#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
drbh's avatar
drbh committed
88
89
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
90
91
92
93
94
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
drbh's avatar
drbh committed
95
    #[serde(alias = "json_object")]
96
97
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
drbh's avatar
drbh committed
98
99
100
101
    #[serde(rename = "regex")]
    Regex(String),
}

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
mod token_serde {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => Ok(Some(s)),
            Value::Object(map) => {
                if let Some(content) = map.get("content").and_then(|v| v.as_str()) {
                    Ok(Some(content.to_string()))
                } else {
                    Err(de::Error::custom(
                        "content key not found in structured token",
                    ))
                }
            }
125
            Value::Null => Ok(None),
126
127
128
129
130
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

131
132
#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
133
    /// Model info
134
135
136
137
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
138
139
140
141
    #[schema(example = "torch.float16")]
    pub model_dtype: String,
    #[schema(example = "cuda")]
    pub model_device_type: String,
142
143
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
144
145
146
147
148
149
150
151
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
OlivierDehaene's avatar
OlivierDehaene committed
152
    pub max_input_tokens: usize,
153
154
155
156
157
158
159
160
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "1.2")]
    pub waiting_served_ratio: f32,
    #[schema(example = "32000")]
    pub max_batch_total_tokens: u32,
    #[schema(example = "20")]
    pub max_waiting_tokens: usize,
161
162
    #[schema(nullable = true, example = "null")]
    pub max_batch_size: Option<usize>,
163
164
    #[schema(example = "2")]
    pub validation_workers: usize,
165
166
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
167
    /// Router Info
168
169
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
170
171
172
173
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
174
175
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
176
177
}

drbh's avatar
drbh committed
178
#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
179
pub(crate) struct GenerateParameters {
180
    /// Generate best_of sequences and return the one if the highest token logprobs.
181
182
183
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,
184
185

    /// The value used to module the logits distribution.
186
187
188
189
190
191
192
193
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,
194
195
196

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
197
198
199
200
201
202
203
204
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,
205
206
207
208

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
209
    #[serde(default)]
210
211
212
213
214
215
216
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,
217
218

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
219
    #[serde(default)]
220
221
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,
222
223

    /// Top-p value for nucleus sampling.
224
225
226
227
228
229
230
231
232
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,
233
234
235

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
236
    #[serde(default)]
237
238
239
240
241
242
243
244
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,
245
246

    /// Activate logits sampling.
247
    #[serde(default)]
248
    #[schema(default = "false", example = true)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
249
    pub do_sample: bool,
250
251

    /// Maximum number of tokens to generate.
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
252
    #[serde(default = "default_max_new_tokens")]
253
    #[schema(nullable = true, default = "100", example = "20")]
254
    pub max_new_tokens: Option<u32>,
255
256

    /// Whether to prepend the prompt to the generated text
OlivierDehaene's avatar
OlivierDehaene committed
257
    #[serde(default)]
258
    #[schema(nullable = true, default = "null", example = false)]
259
    pub return_full_text: Option<bool>,
260
261

    /// Stop generating tokens if a member of `stop` is generated.
262
    #[serde(default)]
263
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
264
    pub stop: Vec<String>,
265
266

    /// Truncate inputs tokens to the given size.
OlivierDehaene's avatar
OlivierDehaene committed
267
    #[serde(default)]
268
    #[schema(nullable = true, default = "null", example = "null")]
269
    pub truncate: Option<usize>,
270
271

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
272
    #[serde(default)]
273
274
    #[schema(default = "false", example = true)]
    pub watermark: bool,
275
276

    /// Whether to return generation details.
277
    #[serde(default)]
278
    #[schema(default = "true")]
OlivierDehaene's avatar
OlivierDehaene committed
279
    pub details: bool,
280
281

    /// Whether to return decoder input token logprobs and ids.
282
    #[serde(default)]
283
    #[schema(default = "false")]
284
    pub decoder_input_details: bool,
285
286

    /// Random sampling seed.
287
    #[serde(default)]
288
289
290
291
292
293
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
294
    pub seed: Option<u64>,
295
296

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
Nicolas Patry's avatar
Nicolas Patry committed
297
298
299
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,
300
301

    /// Grammar constraints for the generation.
drbh's avatar
drbh committed
302
    #[serde(default)]
303
    #[schema(nullable = true, default = "null", example = "null")]
drbh's avatar
drbh committed
304
    pub grammar: Option<GrammarType>,
drbh's avatar
drbh committed
305
306
307
308
309

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
310
311
}

312
fn default_max_new_tokens() -> Option<u32> {
313
    Some(100)
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
314
315
316
317
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
318
        best_of: None,
319
320
        temperature: None,
        repetition_penalty: None,
321
        frequency_penalty: None,
322
323
        top_k: None,
        top_p: None,
324
        typical_p: None,
325
        do_sample: true,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
326
        max_new_tokens: default_max_new_tokens(),
327
        return_full_text: None,
328
        stop: Vec::new(),
329
        truncate: None,
330
        watermark: false,
OlivierDehaene's avatar
OlivierDehaene committed
331
        details: false,
332
        decoder_input_details: false,
333
        seed: None,
Nicolas Patry's avatar
Nicolas Patry committed
334
        top_n_tokens: None,
drbh's avatar
drbh committed
335
        grammar: None,
drbh's avatar
drbh committed
336
        adapter_id: None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
337
338
339
    }
}

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
mod prompt_serde {
    use serde::{self, Deserialize, Deserializer};
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<String>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;
        match value {
            Value::String(s) => Ok(vec![s]),
            Value::Array(arr) if arr.is_empty() => Err(serde::de::Error::custom(
                "Empty array detected. Do not use an empty array for the prompt.",
            )),
            Value::Array(arr) => arr
                .iter()
                .map(|v| match v {
                    Value::String(s) => Ok(s.to_owned()),
                    _ => Err(serde::de::Error::custom("Expected a string")),
                })
                .collect(),
            _ => Err(serde::de::Error::custom(
                "Expected a string or an array of strings",
            )),
        }
    }
}

368
369
370
371
372
373
374
375
376
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
    pub model: String,

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
377
378
    #[serde(deserialize_with = "prompt_serde::deserialize")]
    pub prompt: Vec<String>,
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,
416
417
418
419
420

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Completion {
    pub id: String,
    pub object: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

444
#[derive(Clone, Deserialize, Serialize, ToSchema)]
445
446
447
pub(crate) struct ChatCompletion {
    pub id: String,
    pub object: String,
448
    #[schema(example = "1706270835")]
449
    pub created: u64,
450
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
451
452
453
454
455
456
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

457
#[derive(Clone, Deserialize, Serialize, ToSchema)]
458
459
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
Nicolas Patry's avatar
Nicolas Patry committed
460
    pub message: OutputMessage,
461
    pub logprobs: Option<ChatCompletionLogprobs>,
462
463
464
    pub finish_reason: String,
}

465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
508
509
510
511
512
513
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
514
515
516
517
518
519
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

536
#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
537
538
539
540
541
542
543
544
545
546
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
547
        output: Option<String>,
548
549
550
        created: u64,
        details: Details,
        return_logprobs: bool,
551
        tool_calls: Option<Vec<ToolCall>>,
552
    ) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
577
578
        Self {
            id: String::new(),
579
            object: "chat.completion".into(),
580
581
582
583
584
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
Nicolas Patry's avatar
Nicolas Patry committed
585
                message,
586
                logprobs: return_logprobs
587
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
588
589
590
591
592
593
594
595
596
597
                finish_reason: details.finish_reason.to_string(),
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
598
599
600
601
602
603
604
605
606
#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionCompleteChunk {
    pub id: String,
    pub object: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}
Nicolas Patry's avatar
Nicolas Patry committed
607

608
#[derive(Clone, Serialize, ToSchema)]
609
610
611
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    pub object: String,
612
    #[schema(example = "1706270978")]
613
    pub created: u64,
614
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
615
616
617
618
619
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
}

620
#[derive(Clone, Serialize, ToSchema)]
621
622
623
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
624
    pub logprobs: Option<ChatCompletionLogprobs>,
625
626
627
    pub finish_reason: Option<String>,
}

Nicolas Patry's avatar
Nicolas Patry committed
628
629
630
631
632
633
634
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

635
636
#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
Nicolas Patry's avatar
Nicolas Patry committed
637
638
639
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
drbh's avatar
drbh committed
640
641
}

Nicolas Patry's avatar
Nicolas Patry committed
642
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
643
644
645
646
647
648
649
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

Nicolas Patry's avatar
Nicolas Patry committed
650
#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
drbh's avatar
drbh committed
651
652
653
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
654
655
}

drbh's avatar
drbh committed
656
#[allow(clippy::too_many_arguments)]
657
658
659
660
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
drbh's avatar
drbh committed
661
662
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
663
        created: u64,
664
        logprobs: Option<ChatCompletionLogprobs>,
665
666
        finish_reason: Option<String>,
    ) -> Self {
667
        let delta = match (delta, tool_calls) {
Nicolas Patry's avatar
Nicolas Patry committed
668
669
670
671
672
673
674
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
675
676
677
678
679
680
681
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
Nicolas Patry's avatar
Nicolas Patry committed
682
683
684
685
686
687
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
688
        };
689
690
        Self {
            id: String::new(),
691
            object: "chat.completion.chunk".to_string(),
692
693
694
695
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
696
                index: 0,
697
                delta,
698
699
700
701
702
703
704
705
706
                logprobs,
                finish_reason,
            }],
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
pub(crate) struct ChatRequest {
707
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
drbh's avatar
drbh committed
708
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
709
    pub model: String,
drbh's avatar
drbh committed
710

711
    /// A list of messages comprising the conversation so far.
drbh's avatar
drbh committed
712
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
713
714
715
716
717
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
718
    #[schema(example = "1.0")]
719
720
721
722
723
724
725
726
727
728
729
730
731
732
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
733
    #[schema(example = "false")]
734
735
736
737
738
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
739
    #[schema(example = "5")]
740
741
742
743
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
744
    #[schema(example = "32")]
745
746
747
748
749
750
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
751
    #[schema(nullable = true, example = "2")]
752
753
754
755
756
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
757
    #[schema(nullable = true, example = 0.1)]
758
759
    pub presence_penalty: Option<f32>,

760
761
762
763
764
    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

765
766
767
768
769
    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
770
771
772
773
774
775

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
776
    #[schema(nullable = true, example = 1.0)]
777
778
779
780
781
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
782
    #[schema(nullable = true, example = 0.95)]
783
    pub top_p: Option<f32>,
drbh's avatar
drbh committed
784
785
786
787
788
789
790
791
792
793
794

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
    #[serde(default = "default_tool_prompt")]
    #[schema(
        nullable = true,
795
        example = "\"You will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n\""
drbh's avatar
drbh committed
796
797
798
799
800
801
802
803
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    #[serde(deserialize_with = "deserialize_tool_choice::deserialize")]
    pub tool_choice: Option<ToolType>,
drbh's avatar
drbh committed
804
805
806
807
808
809
810

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
drbh's avatar
drbh committed
811
812
813
814
}

fn default_tool_prompt() -> Option<String> {
    Some(
815
        "\nYou will be presented with a JSON schema representing a set of tools.\nIf the user request lacks of sufficient information to make a precise tool selection: Do not invent any tool's properties, instead notify with an error message.\n\nJSON Schema:\n".to_string(),
drbh's avatar
drbh committed
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    )
}
#[derive(Clone, Deserialize, ToSchema, Serialize)]
enum ToolType {
    FunctionName(String),
    OneOf,
}

/// Deserialize the tool choice from the JSON input or from the function name ("none" is allowed but mapped to None)
mod deserialize_tool_choice {
    use super::*;
    use serde::de;
    use serde::Deserializer;
    use serde_json::Value;

    pub fn deserialize<'de, D>(deserializer: D) -> Result<Option<ToolType>, D::Error>
    where
        D: Deserializer<'de>,
    {
        let value = Value::deserialize(deserializer)?;

        match value {
            Value::String(s) => match s.as_str() {
                "none" => Ok(None),
                "auto" => Ok(Some(ToolType::OneOf)),
                _ => Ok(Some(ToolType::FunctionName(s))),
            },
            Value::Object(map) => {
                if let Some(content) = map
                    .get("function")
                    .and_then(|v| v.get("name"))
                    .and_then(|v| v.as_str())
                {
                    Ok(Some(ToolType::FunctionName(content.to_string())))
                } else {
                    Err(de::Error::custom("function key not found in tool choice"))
                }
            }
            Value::Null => Ok(Some(ToolType::OneOf)),
            _ => Err(de::Error::custom("invalid token format")),
        }
    }
}

860
#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
drbh's avatar
drbh committed
861
862
863
864
865
866
pub struct Tools {
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

867
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
868
869
870
871
872
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

873
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
874
875
876
877
878
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

879
#[derive(Debug, Serialize, Deserialize, PartialEq)]
drbh's avatar
drbh committed
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

Nicolas Patry's avatar
Nicolas Patry committed
895
#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
drbh's avatar
drbh committed
896
897
898
899
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
900
901
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
drbh's avatar
drbh committed
902
903
904
905
906
907
908
909
910
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
911
912
}

913
#[derive(Clone, Serialize, Deserialize, Default)]
914
pub(crate) struct ChatTemplateInputs<'a> {
Nicolas Patry's avatar
Nicolas Patry committed
915
    messages: Vec<TextMessage>,
916
917
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
918
    add_generation_prompt: bool,
919
920
    tools: Option<&'a str>,
    tools_prompt: Option<&'a str>,
921
922
}

Nicolas Patry's avatar
Nicolas Patry committed
923
#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
drbh's avatar
drbh committed
924
pub(crate) struct ToolCall {
925
    pub id: String,
drbh's avatar
drbh committed
926
927
928
929
    pub r#type: String,
    pub function: FunctionDefinition,
}

Nicolas Patry's avatar
Nicolas Patry committed
930
931
932
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Url {
    url: String,
drbh's avatar
drbh committed
933
934
}

Nicolas Patry's avatar
Nicolas Patry committed
935
936
937
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct ImageUrl {
    image_url: Url,
drbh's avatar
drbh committed
938
939
}

Nicolas Patry's avatar
Nicolas Patry committed
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
struct Text {
    text: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
enum MessageChunk {
    Text(Text),
    ImageUrl(ImageUrl),
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    #[serde(deserialize_with = "message_content_serde::deserialize")]
    content: Vec<MessageChunk>,
drbh's avatar
drbh committed
960
    #[serde(default, skip_serializing_if = "Option::is_none")]
Nicolas Patry's avatar
Nicolas Patry committed
961
962
    #[schema(example = "\"David\"")]
    name: Option<String>,
drbh's avatar
drbh committed
963
964
965
966
}

mod message_content_serde {
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
967
    use serde::{Deserialize, Deserializer};
drbh's avatar
drbh committed
968

Nicolas Patry's avatar
Nicolas Patry committed
969
    pub fn deserialize<'de, D>(deserializer: D) -> Result<Vec<MessageChunk>, D::Error>
drbh's avatar
drbh committed
970
971
972
    where
        D: Deserializer<'de>,
    {
Nicolas Patry's avatar
Nicolas Patry committed
973
974
975
976
977
        #[derive(Deserialize)]
        #[serde(untagged)]
        enum Message {
            Text(String),
            Chunks(Vec<MessageChunk>),
drbh's avatar
drbh committed
978
        }
Nicolas Patry's avatar
Nicolas Patry committed
979
980
981
982
983
984
985
986
        let message: Message = Deserialize::deserialize(deserializer)?;
        let chunks = match message {
            Message::Text(text) => {
                vec![MessageChunk::Text(Text { text })]
            }
            Message::Chunks(s) => s,
        };
        Ok(chunks)
drbh's avatar
drbh committed
987
988
989
    }
}

Nicolas Patry's avatar
Nicolas Patry committed
990
991
#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
992
993
994
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
Nicolas Patry's avatar
Nicolas Patry committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: value
                .content
                .into_iter()
                .map(|c| match c {
                    MessageChunk::Text(Text { text }) => text,
                    MessageChunk::ImageUrl(image) => {
                        let url = image.image_url.url;
                        format!("![]({url})")
                    }
                })
                .collect::<Vec<_>>()
                .join(""),
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
1030
1031
}

1032
#[derive(Clone, Debug, Deserialize, ToSchema)]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1033
pub(crate) struct GenerateRequest {
1034
    #[schema(example = "My name is Olivier and I")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1035
1036
1037
1038
1039
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
}

1040
1041
1042
1043
1044
1045
1046
#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
OlivierDehaene's avatar
OlivierDehaene committed
1047
    #[schema(default = "false")]
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
            parameters: req.parameters,
        }
    }
}

1060
1061
1062
1063
1064
1065
#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1066
    #[schema(nullable = true, example = - 0.34)]
1067
1068
1069
    logprob: f32,
}

1070
#[derive(Debug, Serialize, ToSchema, Clone)]
1071
1072
1073
1074
1075
pub struct Token {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
1076
    #[schema(nullable = true, example = - 0.34)]
1077
    logprob: f32,
1078
1079
    #[schema(example = "false")]
    special: bool,
1080
1081
}

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

OlivierDehaene's avatar
OlivierDehaene committed
1094
#[derive(Debug, Serialize, ToSchema)]
1095
#[serde(rename_all(serialize = "snake_case"))]
1096
#[schema(example = "Length")]
1097
1098
1099
1100
1101
1102
1103
1104
1105
pub(crate) enum FinishReason {
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}
1106

1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
Nicolas Patry's avatar
Nicolas Patry committed
1129
1130
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
1131
1132
}

1133
#[derive(Serialize, ToSchema)]
OlivierDehaene's avatar
OlivierDehaene committed
1134
pub(crate) struct Details {
1135
1136
1137
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
OlivierDehaene's avatar
OlivierDehaene committed
1138
    pub generated_tokens: u32,
1139
    #[schema(nullable = true, example = 42)]
1140
    pub seed: Option<u64>,
1141
1142
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
1143
1144
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
Nicolas Patry's avatar
Nicolas Patry committed
1145
1146
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
OlivierDehaene's avatar
OlivierDehaene committed
1147
1148
}

1149
#[derive(Serialize, ToSchema)]
1150
pub(crate) struct GenerateResponse {
1151
    #[schema(example = "test")]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1152
    pub generated_text: String,
OlivierDehaene's avatar
OlivierDehaene committed
1153
1154
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1155
}
1156

1157
1158
1159
1160
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

1161
1162
1163
1164
1165
1166
#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
1167
    #[schema(nullable = true, example = 42)]
1168
1169
1170
1171
    pub seed: Option<u64>,
}

#[derive(Serialize, ToSchema)]
1172
pub(crate) struct StreamResponse {
1173
    pub index: u32,
1174
    pub token: Token,
Nicolas Patry's avatar
Nicolas Patry committed
1175
1176
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
1177
    #[schema(nullable = true, default = "null", example = "test")]
1178
    pub generated_text: Option<String>,
1179
1180
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
1181
1182
}

1183
#[derive(Serialize, ToSchema)]
1184
1185
pub(crate) struct ErrorResponse {
    pub error: String,
1186
    pub error_type: String,
1187
}
1188
1189

#[cfg(test)]
1190
mod tests {
1191
    use super::*;
Nicolas Patry's avatar
Nicolas Patry committed
1192
    use serde_json::json;
1193
1194
    use tokenizers::Tokenizer;

1195
    pub(crate) async fn get_tokenizer() -> Tokenizer {
1196
1197
1198
1199
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
1200
    }
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1215
1216
1217
1218
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
1250
1251
1252
1253
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
1254
1255
1256
1257
1258
1259
        assert_eq!(
            config.bos_token,
            Some("<|begin▁of▁sentence|>".to_string())
        );
        assert_eq!(config.eos_token, Some("<|end▁of▁sentence|>".to_string()));
    }
Nicolas Patry's avatar
Nicolas Patry committed
1260
1261
1262

    #[test]
    fn test_chat_simple_string() {
Nicolas Patry's avatar
Nicolas Patry committed
1263
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1264
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1265
1266
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1267
                "content": "What is Deep Learning?"
Nicolas Patry's avatar
Nicolas Patry committed
1268
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: vec![MessageChunk::Text(Text {
                    text: "What is Deep Learning?".to_string()
                }),],
                name: None
            }
        );
    }

    #[test]
    fn test_chat_request() {
Nicolas Patry's avatar
Nicolas Patry committed
1286
        let json = json!({
Nicolas Patry's avatar
Nicolas Patry committed
1287
            "model": "",
Nicolas Patry's avatar
Nicolas Patry committed
1288
1289
            "messages": [{
                "role": "user",
Nicolas Patry's avatar
Nicolas Patry committed
1290
1291
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
Nicolas Patry's avatar
Nicolas Patry committed
1292
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
Nicolas Patry's avatar
Nicolas Patry committed
1293
                ]
Nicolas Patry's avatar
Nicolas Patry committed
1294
            }]
Nicolas Patry's avatar
Nicolas Patry committed
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            }
        );
    }
Nicolas Patry's avatar
Nicolas Patry committed
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: vec![
                    MessageChunk::Text(Text { text: "Whats in this image?".to_string() }),
                    MessageChunk::ImageUrl(ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } })
                ],
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
1356
}