create_data.py 16.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

5
6
from mmengine import print_log

7
8
9
10
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
11
from tools.dataset_converters import semantickitti_converter
12
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
13
    GTDatabaseCreater, create_groundtruth_database)
VVsssssk's avatar
VVsssssk committed
14
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
zhangwenwei's avatar
zhangwenwei committed
15
16


17
18
19
20
21
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
22
23
24
25
26
27
28
29
30
31
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
32
33
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
34
    """
35
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
36
    kitti.create_reduced_point_cloud(root_path, info_prefix)
37

VVsssssk's avatar
VVsssssk committed
38
39
40
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
41
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
42
43
44
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
45
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
46
47
48
49
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
VVsssssk's avatar
VVsssssk committed
50
        f'{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
51
52
53
54
55
56
57
58
59
60
61
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
62
63
64
65
66
67
68
69
70
71
72
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
73
74
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
75
    """
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
VVsssssk's avatar
VVsssssk committed
80
81
        info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
82
83
        return

VVsssssk's avatar
VVsssssk committed
84
85
86
87
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
88
    create_groundtruth_database(dataset_name, root_path, info_prefix,
VVsssssk's avatar
VVsssssk committed
89
                                f'{info_prefix}_infos_train.pkl')
wangtai's avatar
wangtai committed
90
91


92
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
93
94
    """Prepare data related to Lyft dataset.

95
96
97
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
98
99
100
101
102

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
103
104
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
105
106
107
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)
VVsssssk's avatar
VVsssssk committed
108
109
110
111
112
113
114
115
    if version == 'v1.01-test':
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_test_path)
    elif version == 'v1.01-train':
        info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
        info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_train_path)
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
116

zhangwenwei's avatar
zhangwenwei committed
117

liyinhao's avatar
liyinhao committed
118
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
119
120
121
122
123
124
125
126
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
127
128
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
129
130
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
131
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
132
133
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
134
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_test_path)
135
136


137
138
139
140
141
142
143
144
145
146
147
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
148
149
150
151
    splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]]
    for split in splits:
        filename = osp.join(out_dir, f'{info_prefix}_infos_{split}.pkl')
        update_pkl_infos('s3dis', out_dir=out_dir, pkl_path=filename)
152
153


liyinhao's avatar
liyinhao committed
154
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
155
156
157
158
159
160
161
162
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
163
164
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
165
166
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
Xiang Xu's avatar
Xiang Xu committed
167
168
    update_pkl_infos('sunrgbd', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('sunrgbd', out_dir=out_dir, pkl_path=info_val_path)
169
170


Wenwei Zhang's avatar
Wenwei Zhang committed
171
172
173
174
175
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
176
177
178
179
180
181
182
183
184
185
186
187
188
                    max_sweeps=10,
                    only_gt_database=False,
                    save_senor_data=False,
                    skip_cam_instances_infos=False):
    """Prepare waymo dataset. There are 3 steps as follows:

    Step 1. Extract camera images and lidar point clouds from waymo raw
        data in '*.tfreord' and save as kitti format.
    Step 2. Generate waymo train/val/test infos and save as pickle file.
    Step 3. Generate waymo ground truth database (point clouds within
        each 3D bounding box) for data augmentation in training.
    Steps 1 and 2 will be done in Waymo2KITTI, and step 3 will be done in
    GTDatabaseCreater.
Wenwei Zhang's avatar
Wenwei Zhang committed
189
190
191
192
193
194

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
195
        max_sweeps (int, optional): Number of input consecutive frames.
196
197
198
199
200
201
202
203
            Default to 10. Here we store ego2global information of these
            frames for later use.
        only_gt_database (bool, optional): Whether to only generate ground
            truth database. Default to False.
        save_senor_data (bool, optional): Whether to skip saving
            image and lidar. Default to False.
        skip_cam_instances_infos (bool, optional): Whether to skip
            gathering cam_instances infos in Step 2. Default to False.
Wenwei Zhang's avatar
Wenwei Zhang committed
204
    """
205
    from tools.dataset_converters import waymo_converter as waymo
206

207
208
209
210
211
212
213
214
215
    if version == 'v1.4':
        splits = [
            'training', 'validation', 'testing',
            'testing_3d_camera_only_detection'
        ]
    elif version == 'v1.4-mini':
        splits = ['training', 'validation']
    else:
        raise NotImplementedError(f'Unsupported Waymo version {version}!')
Wenwei Zhang's avatar
Wenwei Zhang committed
216
    out_dir = osp.join(out_dir, 'kitti_format')
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

    if not only_gt_database:
        for i, split in enumerate(splits):
            load_dir = osp.join(root_path, 'waymo_format', split)
            if split == 'validation':
                save_dir = osp.join(out_dir, 'training')
            else:
                save_dir = osp.join(out_dir, split)
            converter = waymo.Waymo2KITTI(
                load_dir,
                save_dir,
                prefix=str(i),
                workers=workers,
                test_mode=(split
                           in ['testing', 'testing_3d_camera_only_detection']),
                info_prefix=info_prefix,
                max_sweeps=max_sweeps,
                split=split,
                save_senor_data=save_senor_data,
                save_cam_instances=not skip_cam_instances_infos)
            converter.convert()
            if split == 'validation':
                converter.merge_trainval_infos()

        from tools.dataset_converters.waymo_converter import \
            create_ImageSets_img_ids
        create_ImageSets_img_ids(out_dir, splits)

245
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
246
247
248
        'WaymoDataset',
        out_dir,
        info_prefix,
249
        f'{info_prefix}_infos_train.pkl',
Wenwei Zhang's avatar
Wenwei Zhang committed
250
        relative_path=False,
251
252
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
253

254
255
    print_log('Successfully preparing Waymo Open Dataset')

Wenwei Zhang's avatar
Wenwei Zhang committed
256

257
258
259
260
261
262
263
264
265
266
267
def semantickitti_data_prep(info_prefix, out_dir):
    """Prepare the info file for SemanticKITTI dataset.

    Args:
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
    """
    semantickitti_converter.create_semantickitti_info_file(
        info_prefix, out_dir)


zhangwenwei's avatar
zhangwenwei committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
287
288
289
290
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
291
292
293
294
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
295
    required=False,
zhangwenwei's avatar
zhangwenwei committed
296
297
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
298
299
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
300
parser.add_argument(
Xiang Xu's avatar
Xiang Xu committed
301
    '--only-gt-database',
302
    action='store_true',
303
304
305
306
307
308
309
310
311
312
313
314
    help='''Whether to only generate ground truth database.
        Only used when dataset is NuScenes or Waymo!''')
parser.add_argument(
    '--skip-cam_instances-infos',
    action='store_true',
    help='''Whether to skip gathering cam_instances infos.
        Only used when dataset is Waymo!''')
parser.add_argument(
    '--skip-saving-sensor-data',
    action='store_true',
    help='''Whether to skip saving image and lidar.
        Only used when dataset is Waymo!''')
zhangwenwei's avatar
zhangwenwei committed
315
316
317
args = parser.parse_args()

if __name__ == '__main__':
318
319
    from mmengine.registry import init_default_scope
    init_default_scope('mmdet3d')
320

zhangwenwei's avatar
zhangwenwei committed
321
    if args.dataset == 'kitti':
Xiang Xu's avatar
Xiang Xu committed
322
        if args.only_gt_database:
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
            create_groundtruth_database(
                'KittiDataset',
                args.root_path,
                args.extra_tag,
                f'{args.extra_tag}_infos_train.pkl',
                relative_path=False,
                mask_anno_path='instances_train.json',
                with_mask=(args.version == 'mask'))
        else:
            kitti_data_prep(
                root_path=args.root_path,
                info_prefix=args.extra_tag,
                version=args.version,
                out_dir=args.out_dir,
                with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
338
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
Xiang Xu's avatar
Xiang Xu committed
339
        if args.only_gt_database:
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
            create_groundtruth_database('NuScenesDataset', args.root_path,
                                        args.extra_tag,
                                        f'{args.extra_tag}_infos_train.pkl')
        else:
            train_version = f'{args.version}-trainval'
            nuscenes_data_prep(
                root_path=args.root_path,
                info_prefix=args.extra_tag,
                version=train_version,
                dataset_name='NuScenesDataset',
                out_dir=args.out_dir,
                max_sweeps=args.max_sweeps)
            test_version = f'{args.version}-test'
            nuscenes_data_prep(
                root_path=args.root_path,
                info_prefix=args.extra_tag,
                version=test_version,
                dataset_name='NuScenesDataset',
                out_dir=args.out_dir,
                max_sweeps=args.max_sweeps)
zhangwenwei's avatar
zhangwenwei committed
360
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
Xiang Xu's avatar
Xiang Xu committed
361
        if args.only_gt_database:
362
363
364
365
366
367
368
369
370
371
372
373
            create_groundtruth_database('NuScenesDataset', args.root_path,
                                        args.extra_tag,
                                        f'{args.extra_tag}_infos_train.pkl')
        else:
            train_version = f'{args.version}'
            nuscenes_data_prep(
                root_path=args.root_path,
                info_prefix=args.extra_tag,
                version=train_version,
                dataset_name='NuScenesDataset',
                out_dir=args.out_dir,
                max_sweeps=args.max_sweeps)
374
375
376
377
378
379
380
381
382
383
384
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps,
            only_gt_database=args.only_gt_database,
            save_senor_data=not args.skip_saving_sensor_data,
            skip_cam_instances_infos=args.skip_cam_instances_infos)
wangtai's avatar
wangtai committed
385
386
387
388
389
390
391
392
393
394
395
396
397
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
398
399
400
401
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
402
403
            out_dir=args.out_dir,
            workers=args.workers)
404
405
406
407
408
409
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
410
411
412
413
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
414
415
            out_dir=args.out_dir,
            workers=args.workers)
416
417
418
    elif args.dataset == 'semantickitti':
        semantickitti_data_prep(
            info_prefix=args.extra_tag, out_dir=args.out_dir)
419
420
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')