create_data.py 13.8 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

5
6
7
8
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
9
from tools.dataset_converters import semantickitti_converter
10
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
11
    GTDatabaseCreater, create_groundtruth_database)
VVsssssk's avatar
VVsssssk committed
12
from tools.dataset_converters.update_infos_to_v2 import update_pkl_infos
zhangwenwei's avatar
zhangwenwei committed
13
14


15
16
17
18
19
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
20
21
22
23
24
25
26
27
28
29
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
30
31
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
32
    """
33
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
34
    kitti.create_reduced_point_cloud(root_path, info_prefix)
35

VVsssssk's avatar
VVsssssk committed
36
37
38
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
39
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
40
41
42
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_trainval_path)
43
    update_pkl_infos('kitti', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
44
45
46
47
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
VVsssssk's avatar
VVsssssk committed
48
        f'{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
49
50
51
52
53
54
55
56
57
58
59
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
60
61
62
63
64
65
66
67
68
69
70
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
71
72
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
73
    """
zhangwenwei's avatar
zhangwenwei committed
74
75
76
77
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
VVsssssk's avatar
VVsssssk committed
78
79
        info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_test_path)
zhangwenwei's avatar
zhangwenwei committed
80
81
        return

VVsssssk's avatar
VVsssssk committed
82
83
84
85
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('nuscenes', out_dir=out_dir, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
86
    create_groundtruth_database(dataset_name, root_path, info_prefix,
VVsssssk's avatar
VVsssssk committed
87
                                f'{info_prefix}_infos_train.pkl')
wangtai's avatar
wangtai committed
88
89


90
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
91
92
    """Prepare data related to Lyft dataset.

93
94
95
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
96
97
98
99
100

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
101
102
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
103
104
105
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)
VVsssssk's avatar
VVsssssk committed
106
107
108
109
110
111
112
113
    if version == 'v1.01-test':
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_test_path)
    elif version == 'v1.01-train':
        info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
        info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_train_path)
        update_pkl_infos('lyft', out_dir=root_path, pkl_path=info_val_path)
wangtai's avatar
wangtai committed
114

zhangwenwei's avatar
zhangwenwei committed
115

liyinhao's avatar
liyinhao committed
116
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
117
118
119
120
121
122
123
124
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
125
126
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
127
128
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
129
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
VVsssssk's avatar
VVsssssk committed
130
131
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
132
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_test_path)
133
134


135
136
137
138
139
140
141
142
143
144
145
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
146
147
148
149
    splits = [f'Area_{i}' for i in [1, 2, 3, 4, 5, 6]]
    for split in splits:
        filename = osp.join(out_dir, f'{info_prefix}_infos_{split}.pkl')
        update_pkl_infos('s3dis', out_dir=out_dir, pkl_path=filename)
150
151


liyinhao's avatar
liyinhao committed
152
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
153
154
155
156
157
158
159
160
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
161
162
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
VVsssssk's avatar
VVsssssk committed
163
164
165
166
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('scannet', out_dir=out_dir, pkl_path=info_val_path)
167
168


Wenwei Zhang's avatar
Wenwei Zhang committed
169
170
171
172
173
174
175
176
177
178
179
180
181
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
182
183
184
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
185
    """
186
    from tools.dataset_converters import waymo_converter as waymo
187

188
189
190
    splits = [
        'training', 'validation', 'testing', 'testing_3d_camera_only_detection'
    ]
Wenwei Zhang's avatar
Wenwei Zhang committed
191
192
193
194
195
196
197
198
199
200
201
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
202
203
            test_mode=(split
                       in ['testing', 'testing_3d_camera_only_detection']))
Wenwei Zhang's avatar
Wenwei Zhang committed
204
        converter.convert()
205
206
207
208

    from tools.dataset_converters.waymo_converter import \
        create_ImageSets_img_ids
    create_ImageSets_img_ids(osp.join(out_dir, 'kitti_format'), splits)
Wenwei Zhang's avatar
Wenwei Zhang committed
209
210
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
211
212
    kitti.create_waymo_info_file(
        out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers)
VVsssssk's avatar
VVsssssk committed
213
214
215
    info_train_path = osp.join(out_dir, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(out_dir, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(out_dir, f'{info_prefix}_infos_trainval.pkl')
216
    info_test_path = osp.join(out_dir, f'{info_prefix}_infos_test.pkl')
217
218
219
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_train_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_val_path)
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_trainval_path)
220
    update_pkl_infos('waymo', out_dir=out_dir, pkl_path=info_test_path)
221
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
222
223
224
        'WaymoDataset',
        out_dir,
        info_prefix,
225
        f'{info_prefix}_infos_train.pkl',
Wenwei Zhang's avatar
Wenwei Zhang committed
226
        relative_path=False,
227
228
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
229
230


231
232
233
234
235
236
237
238
239
240
241
def semantickitti_data_prep(info_prefix, out_dir):
    """Prepare the info file for SemanticKITTI dataset.

    Args:
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
    """
    semantickitti_converter.create_semantickitti_info_file(
        info_prefix, out_dir)


zhangwenwei's avatar
zhangwenwei committed
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
261
262
263
264
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
265
266
267
268
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
269
    required=False,
zhangwenwei's avatar
zhangwenwei committed
270
271
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
272
273
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
274
275
276
args = parser.parse_args()

if __name__ == '__main__':
VVsssssk's avatar
VVsssssk committed
277
278
    from mmdet3d.utils import register_all_modules
    register_all_modules()
279

zhangwenwei's avatar
zhangwenwei committed
280
281
282
283
284
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
285
286
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
313
314
315
316
317
318
319
320
321
322
323
324
325
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
326
327
328
329
330
331
332
333
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
334
335
336
337
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
338
339
            out_dir=args.out_dir,
            workers=args.workers)
340
341
342
343
344
345
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
346
347
348
349
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
350
351
            out_dir=args.out_dir,
            workers=args.workers)
352
353
354
    elif args.dataset == 'semantickitti':
        semantickitti_data_prep(
            info_prefix=args.extra_tag, out_dir=args.out_dir)
355
356
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')