create_data.py 11.3 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
3
import os
zhangwenwei's avatar
zhangwenwei committed
4
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
5

6
7
8
9
10
from tools.dataset_converters import indoor_converter as indoor
from tools.dataset_converters import kitti_converter as kitti
from tools.dataset_converters import lyft_converter as lyft_converter
from tools.dataset_converters import nuscenes_converter as nuscenes_converter
from tools.dataset_converters.create_gt_database import (
Wenbo Yu's avatar
Wenbo Yu committed
11
    GTDatabaseCreater, create_groundtruth_database)
zhangwenwei's avatar
zhangwenwei committed
12
13


14
15
16
17
18
def kitti_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    with_plane=False):
wangtai's avatar
wangtai committed
19
20
21
22
23
24
25
26
27
28
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
29
30
        with_plane (bool, optional): Whether to use plane information.
            Default: False.
wangtai's avatar
wangtai committed
31
    """
32
    kitti.create_kitti_info_file(root_path, info_prefix, with_plane)
zhangwenwei's avatar
zhangwenwei committed
33
    kitti.create_reduced_point_cloud(root_path, info_prefix)
34
35
36
37
38
39
40
41
42
43
44

    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(root_path,
                                  f'{info_prefix}_infos_trainval.pkl')
    info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
    kitti.export_2d_annotation(root_path, info_train_path)
    kitti.export_2d_annotation(root_path, info_val_path)
    kitti.export_2d_annotation(root_path, info_trainval_path)
    kitti.export_2d_annotation(root_path, info_test_path)

zhangwenwei's avatar
zhangwenwei committed
45
46
47
48
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
wangtai's avatar
wangtai committed
49
        f'{out_dir}/{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
50
51
52
53
54
55
56
57
58
59
60
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
61
62
63
64
65
66
67
68
69
70
71
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
72
73
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
74
    """
zhangwenwei's avatar
zhangwenwei committed
75
76
77
78
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
79
80
81
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        nuscenes_converter.export_2d_annotation(
            root_path, info_test_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
82
83
        return

wangtai's avatar
wangtai committed
84
85
    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
86
87
88
89
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
wangtai's avatar
wangtai committed
90
91
92
93
    create_groundtruth_database(dataset_name, root_path, info_prefix,
                                f'{out_dir}/{info_prefix}_infos_train.pkl')


94
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
95
96
    """Prepare data related to Lyft dataset.

97
98
99
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
100
101
102
103
104

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
105
106
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
107
108
109
110
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

zhangwenwei's avatar
zhangwenwei committed
111

liyinhao's avatar
liyinhao committed
112
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
113
114
115
116
117
118
119
120
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
121
122
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
123
124


125
126
127
128
129
130
131
132
133
134
135
136
137
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)


liyinhao's avatar
liyinhao committed
138
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
139
140
141
142
143
144
145
146
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
147
148
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
149
150


Wenwei Zhang's avatar
Wenwei Zhang committed
151
152
153
154
155
156
157
158
159
160
161
162
163
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
164
165
166
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
167
    """
168
    from tools.dataset_converters import waymo_converter as waymo
169

Wenwei Zhang's avatar
Wenwei Zhang committed
170
171
172
173
174
175
176
177
178
179
180
181
    splits = ['training', 'validation', 'testing']
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
ChaimZhu's avatar
ChaimZhu committed
182
            test_mode=(split == 'testing'))
Wenwei Zhang's avatar
Wenwei Zhang committed
183
184
185
        converter.convert()
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
186
187
188
    kitti.create_waymo_info_file(
        out_dir, info_prefix, max_sweeps=max_sweeps, workers=workers)
    GTDatabaseCreater(
Wenwei Zhang's avatar
Wenwei Zhang committed
189
190
191
192
193
        'WaymoDataset',
        out_dir,
        info_prefix,
        f'{out_dir}/{info_prefix}_infos_train.pkl',
        relative_path=False,
194
195
        with_mask=False,
        num_worker=workers).create()
Wenwei Zhang's avatar
Wenwei Zhang committed
196
197


zhangwenwei's avatar
zhangwenwei committed
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
217
218
219
220
parser.add_argument(
    '--with-plane',
    action='store_true',
    help='Whether to use plane information for kitti.')
zhangwenwei's avatar
zhangwenwei committed
221
222
223
224
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
225
    required=False,
zhangwenwei's avatar
zhangwenwei committed
226
227
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
228
229
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
230
231
232
233
234
235
236
237
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
238
239
            out_dir=args.out_dir,
            with_plane=args.with_plane)
zhangwenwei's avatar
zhangwenwei committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
266
267
268
269
270
271
272
273
274
275
276
277
278
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
279
280
281
282
283
284
285
286
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
287
288
289
290
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
291
292
            out_dir=args.out_dir,
            workers=args.workers)
293
294
295
296
297
298
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
299
300
301
302
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
303
304
            out_dir=args.out_dir,
            workers=args.workers)
305
306
307
308
309
    else:
        raise NotImplementedError(f'Don\'t support {args.dataset} dataset.')

    for file_name in os.listdir(args.out_dir):
        if '_infos_' in file_name and '.pkl' in file_name:
310
            cmd = f'python tools/dataset_converters/update_infos_to_v2.py ' \
311
312
313
314
315
                  f'--dataset {args.dataset} ' \
                  f'--pkl {osp.join(args.out_dir,file_name)} ' \
                  f'--out-dir {args.out_dir}'
            print(cmd)
            os.system(cmd)