create_data.py 11.2 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
import argparse
zhangwenwei's avatar
zhangwenwei committed
2
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
3

zhangwenwei's avatar
zhangwenwei committed
4
5
6
7
from tools.data_converter import indoor_converter as indoor
from tools.data_converter import kitti_converter as kitti
from tools.data_converter import lyft_converter as lyft_converter
from tools.data_converter import nuscenes_converter as nuscenes_converter
zhangwenwei's avatar
zhangwenwei committed
8
9
10
11
from tools.data_converter.create_gt_database import create_groundtruth_database


def kitti_data_prep(root_path, info_prefix, version, out_dir):
wangtai's avatar
wangtai committed
12
13
14
15
16
17
18
19
20
21
22
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
    """
zhangwenwei's avatar
zhangwenwei committed
23
24
    kitti.create_kitti_info_file(root_path, info_prefix)
    kitti.create_reduced_point_cloud(root_path, info_prefix)
25
26
27
28
29
30
31
32
33
34
35

    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(root_path,
                                  f'{info_prefix}_infos_trainval.pkl')
    info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
    kitti.export_2d_annotation(root_path, info_train_path)
    kitti.export_2d_annotation(root_path, info_val_path)
    kitti.export_2d_annotation(root_path, info_trainval_path)
    kitti.export_2d_annotation(root_path, info_test_path)

zhangwenwei's avatar
zhangwenwei committed
36
37
38
39
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
wangtai's avatar
wangtai committed
40
        f'{out_dir}/{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
41
42
43
44
45
46
47
48
49
50
51
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
52
53
54
55
56
57
58
59
60
61
62
63
64
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
        max_sweeps (int): Number of input consecutive frames. Default: 10
    """
zhangwenwei's avatar
zhangwenwei committed
65
66
67
68
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
69
70
71
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        nuscenes_converter.export_2d_annotation(
            root_path, info_test_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
72
73
        return

wangtai's avatar
wangtai committed
74
75
    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
76
77
78
79
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
wangtai's avatar
wangtai committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    create_groundtruth_database(dataset_name, root_path, info_prefix,
                                f'{out_dir}/{info_prefix}_infos_train.pkl')


def lyft_data_prep(root_path,
                   info_prefix,
                   version,
                   dataset_name,
                   out_dir,
                   max_sweeps=10):
    """Prepare data related to Lyft dataset.

    Related data consists of '.pkl' files recording basic infos,
    and 2D annotations.
    Although the ground truth database is not used in Lyft, it can also be
    generated like nuScenes.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
            Not used here if the groundtruth database is not generated.
        max_sweeps (int): Number of input consecutive frames. Default: 10
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.01-test':
        return

    train_info_name = f'{info_prefix}_infos_train'
    val_info_name = f'{info_prefix}_infos_val'

    info_train_path = osp.join(root_path, f'{train_info_name}.pkl')
    info_val_path = osp.join(root_path, f'{val_info_name}.pkl')

    lyft_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    lyft_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
122
123


liyinhao's avatar
liyinhao committed
124
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
125
126
127
128
129
130
131
132
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
133
134
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
135
136


137
138
139
140
141
142
143
144
145
146
147
148
149
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)


liyinhao's avatar
liyinhao committed
150
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
151
152
153
154
155
156
157
158
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
159
160
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
161
162


Wenwei Zhang's avatar
Wenwei Zhang committed
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
        max_sweeps (int): Number of input consecutive frames. Default: 5 \
            Here we store pose information of these frames for later use.
    """
179
180
    from tools.data_converter import waymo_converter as waymo

Wenwei Zhang's avatar
Wenwei Zhang committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    splits = ['training', 'validation', 'testing']
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
            test_mode=(split == 'test'))
        converter.convert()
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
    kitti.create_waymo_info_file(out_dir, info_prefix, max_sweeps=max_sweeps)
    create_groundtruth_database(
        'WaymoDataset',
        out_dir,
        info_prefix,
        f'{out_dir}/{info_prefix}_infos_train.pkl',
        relative_path=False,
        with_mask=False)


zhangwenwei's avatar
zhangwenwei committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
    required='False',
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
233
234
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir)
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='LyftDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='LyftDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
287
288
289
290
291
292
293
294
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
295
296
297
298
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
299
300
            out_dir=args.out_dir,
            workers=args.workers)
301
302
303
304
305
306
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
307
308
309
310
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
311
312
            out_dir=args.out_dir,
            workers=args.workers)