create_data.py 10.4 KB
Newer Older
dingchang's avatar
dingchang committed
1
# Copyright (c) OpenMMLab. All rights reserved.
zhangwenwei's avatar
zhangwenwei committed
2
import argparse
zhangwenwei's avatar
zhangwenwei committed
3
from os import path as osp
zhangwenwei's avatar
zhangwenwei committed
4

zhangwenwei's avatar
zhangwenwei committed
5
6
7
8
from tools.data_converter import indoor_converter as indoor
from tools.data_converter import kitti_converter as kitti
from tools.data_converter import lyft_converter as lyft_converter
from tools.data_converter import nuscenes_converter as nuscenes_converter
zhangwenwei's avatar
zhangwenwei committed
9
10
11
12
from tools.data_converter.create_gt_database import create_groundtruth_database


def kitti_data_prep(root_path, info_prefix, version, out_dir):
wangtai's avatar
wangtai committed
13
14
15
16
17
18
19
20
21
22
23
    """Prepare data related to Kitti dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        out_dir (str): Output directory of the groundtruth database info.
    """
zhangwenwei's avatar
zhangwenwei committed
24
25
    kitti.create_kitti_info_file(root_path, info_prefix)
    kitti.create_reduced_point_cloud(root_path, info_prefix)
26
27
28
29
30
31
32
33
34
35
36

    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
    info_trainval_path = osp.join(root_path,
                                  f'{info_prefix}_infos_trainval.pkl')
    info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
    kitti.export_2d_annotation(root_path, info_train_path)
    kitti.export_2d_annotation(root_path, info_val_path)
    kitti.export_2d_annotation(root_path, info_trainval_path)
    kitti.export_2d_annotation(root_path, info_test_path)

zhangwenwei's avatar
zhangwenwei committed
37
38
39
40
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
wangtai's avatar
wangtai committed
41
        f'{out_dir}/{info_prefix}_infos_train.pkl',
zhangwenwei's avatar
zhangwenwei committed
42
43
44
45
46
47
48
49
50
51
52
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
wangtai's avatar
wangtai committed
53
54
55
56
57
58
59
60
61
62
63
    """Prepare data related to nuScenes dataset.

    Related data consists of '.pkl' files recording basic infos,
    2D annotations and groundtruth database.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
        dataset_name (str): The dataset class name.
        out_dir (str): Output directory of the groundtruth database info.
64
65
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 10
wangtai's avatar
wangtai committed
66
    """
zhangwenwei's avatar
zhangwenwei committed
67
68
69
70
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
71
72
73
        info_test_path = osp.join(root_path, f'{info_prefix}_infos_test.pkl')
        nuscenes_converter.export_2d_annotation(
            root_path, info_test_path, version=version)
zhangwenwei's avatar
zhangwenwei committed
74
75
        return

wangtai's avatar
wangtai committed
76
77
    info_train_path = osp.join(root_path, f'{info_prefix}_infos_train.pkl')
    info_val_path = osp.join(root_path, f'{info_prefix}_infos_val.pkl')
zhangwenwei's avatar
zhangwenwei committed
78
79
80
81
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
wangtai's avatar
wangtai committed
82
83
84
85
    create_groundtruth_database(dataset_name, root_path, info_prefix,
                                f'{out_dir}/{info_prefix}_infos_train.pkl')


86
def lyft_data_prep(root_path, info_prefix, version, max_sweeps=10):
wangtai's avatar
wangtai committed
87
88
    """Prepare data related to Lyft dataset.

89
90
91
    Related data consists of '.pkl' files recording basic infos.
    Although the ground truth database and 2D annotations are not used in
    Lyft, it can also be generated like nuScenes.
wangtai's avatar
wangtai committed
92
93
94
95
96

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        version (str): Dataset version.
97
98
        max_sweeps (int, optional): Number of input consecutive frames.
            Defaults to 10.
wangtai's avatar
wangtai committed
99
100
101
102
    """
    lyft_converter.create_lyft_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

zhangwenwei's avatar
zhangwenwei committed
103

liyinhao's avatar
liyinhao committed
104
def scannet_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
105
106
107
108
109
110
111
112
    """Prepare the info file for scannet dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
113
114
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
115
116


117
118
119
120
121
122
123
124
125
126
127
128
129
def s3dis_data_prep(root_path, info_prefix, out_dir, workers):
    """Prepare the info file for s3dis dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)


liyinhao's avatar
liyinhao committed
130
def sunrgbd_data_prep(root_path, info_prefix, out_dir, workers):
wangtai's avatar
wangtai committed
131
132
133
134
135
136
137
138
    """Prepare the info file for sunrgbd dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
    """
liyinhao's avatar
liyinhao committed
139
140
    indoor.create_indoor_info_file(
        root_path, info_prefix, out_dir, workers=workers)
141
142


Wenwei Zhang's avatar
Wenwei Zhang committed
143
144
145
146
147
148
149
150
151
152
153
154
155
def waymo_data_prep(root_path,
                    info_prefix,
                    version,
                    out_dir,
                    workers,
                    max_sweeps=5):
    """Prepare the info file for waymo dataset.

    Args:
        root_path (str): Path of dataset root.
        info_prefix (str): The prefix of info filenames.
        out_dir (str): Output directory of the generated info file.
        workers (int): Number of threads to be used.
156
157
158
        max_sweeps (int, optional): Number of input consecutive frames.
            Default: 5. Here we store pose information of these frames
            for later use.
Wenwei Zhang's avatar
Wenwei Zhang committed
159
    """
160
161
    from tools.data_converter import waymo_converter as waymo

Wenwei Zhang's avatar
Wenwei Zhang committed
162
163
164
165
166
167
168
169
170
171
172
173
    splits = ['training', 'validation', 'testing']
    for i, split in enumerate(splits):
        load_dir = osp.join(root_path, 'waymo_format', split)
        if split == 'validation':
            save_dir = osp.join(out_dir, 'kitti_format', 'training')
        else:
            save_dir = osp.join(out_dir, 'kitti_format', split)
        converter = waymo.Waymo2KITTI(
            load_dir,
            save_dir,
            prefix=str(i),
            workers=workers,
ChaimZhu's avatar
ChaimZhu committed
174
            test_mode=(split == 'testing'))
Wenwei Zhang's avatar
Wenwei Zhang committed
175
176
177
178
179
180
181
182
183
184
185
186
187
        converter.convert()
    # Generate waymo infos
    out_dir = osp.join(out_dir, 'kitti_format')
    kitti.create_waymo_info_file(out_dir, info_prefix, max_sweeps=max_sweeps)
    create_groundtruth_database(
        'WaymoDataset',
        out_dir,
        info_prefix,
        f'{out_dir}/{info_prefix}_infos_train.pkl',
        relative_path=False,
        with_mask=False)


zhangwenwei's avatar
zhangwenwei committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
211
    required=False,
zhangwenwei's avatar
zhangwenwei committed
212
213
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
liyinhao's avatar
liyinhao committed
214
215
parser.add_argument(
    '--workers', type=int, default=4, help='number of threads to be used')
zhangwenwei's avatar
zhangwenwei committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir)
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
wangtai's avatar
wangtai committed
251
252
253
254
255
256
257
258
259
260
261
262
263
    elif args.dataset == 'lyft':
        train_version = f'{args.version}-train'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        lyft_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            max_sweeps=args.max_sweeps)
Wenwei Zhang's avatar
Wenwei Zhang committed
264
265
266
267
268
269
270
271
    elif args.dataset == 'waymo':
        waymo_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir,
            workers=args.workers,
            max_sweeps=args.max_sweeps)
272
273
274
275
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
276
277
            out_dir=args.out_dir,
            workers=args.workers)
278
279
280
281
282
283
    elif args.dataset == 's3dis':
        s3dis_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir,
            workers=args.workers)
284
285
286
287
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
liyinhao's avatar
liyinhao committed
288
289
            out_dir=args.out_dir,
            workers=args.workers)