create_data.py 4.23 KB
Newer Older
zhangwenwei's avatar
zhangwenwei committed
1
2
3
import argparse
import os.path as osp

liyinhao's avatar
liyinhao committed
4
import tools.data_converter.indoor_converter as indoor
zhangwenwei's avatar
zhangwenwei committed
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import tools.data_converter.kitti_converter as kitti
import tools.data_converter.nuscenes_converter as nuscenes_converter
from tools.data_converter.create_gt_database import create_groundtruth_database


def kitti_data_prep(root_path, info_prefix, version, out_dir):
    kitti.create_kitti_info_file(root_path, info_prefix)
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    create_groundtruth_database(
        'KittiDataset',
        root_path,
        info_prefix,
        '{}/{}_infos_train.pkl'.format(out_dir, info_prefix),
        relative_path=False,
        mask_anno_path='instances_train.json',
        with_mask=(version == 'mask'))


def nuscenes_data_prep(root_path,
                       info_prefix,
                       version,
                       dataset_name,
                       out_dir,
                       max_sweeps=10):
    nuscenes_converter.create_nuscenes_infos(
        root_path, info_prefix, version=version, max_sweeps=max_sweeps)

    if version == 'v1.0-test':
        return

    info_train_path = osp.join(root_path,
                               '{}_infos_train.pkl'.format(info_prefix))
    info_val_path = osp.join(root_path, '{}_infos_val.pkl'.format(info_prefix))
    nuscenes_converter.export_2d_annotation(
        root_path, info_train_path, version=version)
    nuscenes_converter.export_2d_annotation(
        root_path, info_val_path, version=version)
    create_groundtruth_database(
        dataset_name, root_path, info_prefix,
        '{}/{}_infos_train.pkl'.format(out_dir, info_prefix))


47
def scannet_data_prep(root_path, info_prefix, out_dir):
liyinhao's avatar
liyinhao committed
48
    indoor.create_indoor_info_file(root_path, info_prefix, out_dir)
49
50
51


def sunrgbd_data_prep(root_path, info_prefix, out_dir):
liyinhao's avatar
liyinhao committed
52
    indoor.create_indoor_info_file(root_path, info_prefix, out_dir)
53
54


zhangwenwei's avatar
zhangwenwei committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
parser = argparse.ArgumentParser(description='Data converter arg parser')
parser.add_argument('dataset', metavar='kitti', help='name of the dataset')
parser.add_argument(
    '--root-path',
    type=str,
    default='./data/kitti',
    help='specify the root path of dataset')
parser.add_argument(
    '--version',
    type=str,
    default='v1.0',
    required=False,
    help='specify the dataset version, no need for kitti')
parser.add_argument(
    '--max-sweeps',
    type=int,
    default=10,
    required=False,
    help='specify sweeps of lidar per example')
parser.add_argument(
    '--out-dir',
    type=str,
    default='./data/kitti',
    required='False',
    help='name of info pkl')
parser.add_argument('--extra-tag', type=str, default='kitti')
args = parser.parse_args()

if __name__ == '__main__':
    if args.dataset == 'kitti':
        kitti_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=args.version,
            out_dir=args.out_dir)
    elif args.dataset == 'nuscenes' and args.version != 'v1.0-mini':
        train_version = f'{args.version}-trainval'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
        test_version = f'{args.version}-test'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=test_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
    elif args.dataset == 'nuscenes' and args.version == 'v1.0-mini':
        train_version = f'{args.version}'
        nuscenes_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            version=train_version,
            dataset_name='NuScenesDataset',
            out_dir=args.out_dir,
            max_sweeps=args.max_sweeps)
116
117
118
119
120
121
122
123
124
125
    elif args.dataset == 'scannet':
        scannet_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir)
    elif args.dataset == 'sunrgbd':
        sunrgbd_data_prep(
            root_path=args.root_path,
            info_prefix=args.extra_tag,
            out_dir=args.out_dir)