transformer.py 53.1 KB
Newer Older
Jared Casper's avatar
Jared Casper committed
1
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
2
3
4

"""Transformer."""
import math
5
from contextlib import nullcontext
6
import torch
7
import torch.nn.functional as F
8

9
from megatron import get_timers, get_args, core, get_num_microbatches
10
from .module import MegatronModule
11
from megatron.core import mpu, tensor_parallel
12
13
from megatron.core.enums import ModelType
from megatron.model.enums import AttnMaskType, LayerType, AttnType
14
from megatron.model import LayerNorm
15
16
from megatron.model.fused_softmax import FusedScaleMaskSoftmax
from megatron.model.fused_bias_gelu import bias_gelu_impl
17
from megatron.model.utils import attention_mask_func, openai_gelu, erf_gelu
18

19
20
21
22
23
24
25
26
27
28
try:
    from einops import rearrange
except ImportError:
    rearrange = None

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_func
except ImportError:
    flash_attn_unpadded_func = None

29
30
31
32
33
34
35
36
37
38
""" We use the following notation throughout this file:
     h: hidden size
     n: number of attention heads
     p: number of model parallel partitions
     np: n/p
     hp: h/p
     hn: h/n
     b: batch size
     s: sequence length
     l: number of layers
39
    Transformer takes input of size [s, b, h] and returns a
40
41
42
43
    tensor of the same size. We use the following arguments:
        hyperparameters: transformer hyperparameters
"""

44
class DropPath(MegatronModule):
45
    """Drop paths (Stochastic Depth) per sample
46
47
48
    (when applied in main path of residual blocks).
    """

Vijay Korthikanti's avatar
Vijay Korthikanti committed
49
    def __init__(self, drop_prob=0.):
50
51
52
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

Vijay Korthikanti's avatar
Vijay Korthikanti committed
53
    def forward(self, hidden_state):
54
        if self.drop_prob == 0. or not self.training:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
55
            return hidden_state
56
57
        keep_prob = 1 - self.drop_prob
        # work with diff dim tensors, not just 2D ConvNets
58
59
        # hidden_state: [s, b, h]
        shape = (1,) + (hidden_state.shape[1],) + (1,) * (hidden_state.ndim - 2)
60
        random_tensor = keep_prob + \
Vijay Korthikanti's avatar
Vijay Korthikanti committed
61
            torch.rand(shape, dtype=hidden_state.dtype, device=hidden_state.device)
62
        random_tensor.floor_()  # binarize
Vijay Korthikanti's avatar
Vijay Korthikanti committed
63
        output = hidden_state.div(keep_prob) * random_tensor
64
65
        return output

66
67
68
69
70
71
72
73
74
75
76
def _args_to_kwargs():
    args = get_args()

    common_kwargs = {
        "params_dtype": args.params_dtype,
        "use_cpu_initialization": args.use_cpu_initialization,
        "perform_initialization": args.perform_initialization,
        "gradient_accumulation_fusion": args.gradient_accumulation_fusion,
        "sequence_parallel_enabled": args.sequence_parallel,
    }
    return common_kwargs
77

78
79
80
81
82
class ParallelMLP(MegatronModule):
    """MLP.

    MLP will take the input with h hidden state, project it to 4*h
    hidden dimension, perform nonlinear transformation, and project the
hwijeen's avatar
hwijeen committed
83
    state back into h hidden dimension.
84
85
    """

86
    def __init__(self, init_method, output_layer_init_method):
87
        super(ParallelMLP, self).__init__()
Mohammad's avatar
Mohammad committed
88
        args = get_args()
89

90
        self.add_bias = args.add_bias_linear
91

92
        # Project to 4h. If using swiglu double the output width, see https://arxiv.org/pdf/2002.05202.pdf
93
        self.dense_h_to_4h = tensor_parallel.ColumnParallelLinear(
Mohammad's avatar
Mohammad committed
94
            args.hidden_size,
95
96
            args.ffn_hidden_size * 2 if args.swiglu else args.ffn_hidden_size,
            bias=self.add_bias,
97
            gather_output=False,
98
            init_method=init_method,
99
100
101
            skip_bias_add=True,
            async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
            **_args_to_kwargs())
102

103
104
105
106
        self.bias_gelu_fusion = False
        self.activation_func = None
        self.swiglu = args.swiglu

107
108
109
110
        if args.openai_gelu:
            self.activation_func = openai_gelu
        elif args.onnx_safe:
            self.activation_func = erf_gelu
111
112
113
114
115
116
117
118
119
120
121
122
        elif args.swiglu:
            def swiglu(x):
                x = torch.chunk(x, 2, dim=-1)
                return F.silu(x[0]) * x[1]
            self.activation_func = swiglu
        elif args.squared_relu:
            def squared_relu(x):
                return torch.pow(F.relu(x), 2)
            self.activation_func = squared_relu
        else:
            self.bias_gelu_fusion = args.bias_gelu_fusion
            self.activation_func = F.gelu
123
124

        # Project back to h.
125
        self.dense_4h_to_h = tensor_parallel.RowParallelLinear(
126
            args.ffn_hidden_size,
Mohammad's avatar
Mohammad committed
127
            args.hidden_size,
128
            bias=self.add_bias,
129
            input_is_parallel=True,
130
            init_method=output_layer_init_method,
131
132
            skip_bias_add=True,
            **_args_to_kwargs())
133

134
135
    def forward(self, hidden_states):

136
137
        # [s, b, 4hp]
        intermediate_parallel, bias_parallel = self.dense_h_to_4h(hidden_states)
138

139
        if self.bias_gelu_fusion:
140
141
142
            assert self.add_bias is True
            assert self.activation_func == F.gelu
            intermediate_parallel = bias_gelu_impl(intermediate_parallel, bias_parallel)
143
        else:
Jared Casper's avatar
Jared Casper committed
144
            if bias_parallel is not None:
145
146
                intermediate_parallel = intermediate_parallel + bias_parallel
            intermediate_parallel = self.activation_func(intermediate_parallel)
147
148
149
150

        # [s, b, h]
        output, output_bias = self.dense_4h_to_h(intermediate_parallel)
        return output, output_bias
151

rprenger's avatar
rprenger committed
152
153
154
155
class SwitchMLP(MegatronModule):
    """
    Routes input to one of N MLP "experts"
    """
rprenger's avatar
rprenger committed
156
    def __init__(self, init_method, output_layer_init_method):
rprenger's avatar
rprenger committed
157
158
        super(SwitchMLP, self).__init__()
        args = get_args()
rprenger's avatar
rprenger committed
159
        self.router = torch.nn.Linear(args.hidden_size, args.num_experts)
rprenger's avatar
rprenger committed
160
        self.experts = torch.nn.ModuleList()
rprenger's avatar
rprenger committed
161
        for i in range(args.num_experts):
rprenger's avatar
rprenger committed
162
            self.experts.append(ParallelMLP(init_method, output_layer_init_method))
163

rprenger's avatar
rprenger committed
164
    def forward(self, hidden_states):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
165
166
167
        # hidden_states: [s, b, h]
        s = hidden_states.size(0)
        b = hidden_states.size(1)
rprenger's avatar
rprenger committed
168
169
        h = hidden_states.size(2)
        route = self.router(hidden_states)
rprenger's avatar
rprenger committed
170
        route = torch.nn.functional.softmax(route, dim=2)
rprenger's avatar
rprenger committed
171
        max_prob, max_ind = torch.max(route, dim=2)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
172
        max_prob = torch.unsqueeze(max_prob, 2) # [s b 1]
173

rprenger's avatar
rprenger committed
174
        # TODO (rprenger) TODO this could be made easier to read
Vijay Korthikanti's avatar
Vijay Korthikanti committed
175
        # Converting [s, b, h] to [s*b, h].
176
        # Each vector could be routed differently
Vijay Korthikanti's avatar
Vijay Korthikanti committed
177
178
179
        hidden_states = hidden_states.view(-1, hidden_states.size(2)) # [s*b h]
        max_prob = max_prob.view(-1, max_prob.size(2)) # [s*b 1]
        max_ind = max_ind.view(-1) # [s*b]
rprenger's avatar
rprenger committed
180
181
182

        output_total = torch.empty_like(hidden_states)
        output_bias_total = torch.empty_like(hidden_states)
rprenger's avatar
rprenger committed
183
        #TODO (rprenger) This does each expert in serial, but it could be parallelized
184

rprenger's avatar
rprenger committed
185
        for expert_num, expert in enumerate(self.experts):
186
187
            local_indices = (max_ind == expert_num).nonzero()
            hidden = hidden_states[local_indices,:]
rprenger's avatar
rprenger committed
188
189
            output, output_bias = expert(hidden)
            output_bias = output_bias.expand_as(output)
190
191
192
            output_total[local_indices,:] = output
            output_bias_total[local_indices,:] = output_bias

rprenger's avatar
rprenger committed
193
194
        output_total = output_total*max_prob
        output_bias_total = output_bias_total*max_prob
Vijay Korthikanti's avatar
Vijay Korthikanti committed
195
196
        output_total = output_total.view(s, b, h)
        output_bias_total = output_bias_total.view(s, b, h)
rprenger's avatar
rprenger committed
197
198

        return output_total, output_bias_total
199

200
201

class CoreAttention(MegatronModule):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
202

203
204
205
206
207
208
209
210
211
212
213
214
215
    def __init__(self, layer_number,
                 attn_mask_type=AttnMaskType.padding):
        super(CoreAttention, self).__init__()
        args = get_args()
        self.fp16 = args.fp16
        self.bf16 = args.bf16

        self.apply_query_key_layer_scaling = args.apply_query_key_layer_scaling
        self.attention_softmax_in_fp32 = args.attention_softmax_in_fp32
        if self.apply_query_key_layer_scaling:
            self.attention_softmax_in_fp32 = True
        self.layer_number = max(1, layer_number)
        self.attn_mask_type = attn_mask_type
Vijay Korthikanti's avatar
Vijay Korthikanti committed
216
        self.sequence_parallel = args.sequence_parallel
217
218
219
220

        projection_size = args.kv_channels * args.num_attention_heads

        # Per attention head and per partition values.
221
        world_size = mpu.get_tensor_model_parallel_world_size()
222
223
224
        self.hidden_size_per_partition = core.utils.divide(projection_size,
                                                           world_size)
        self.hidden_size_per_attention_head = core.utils.divide(
225
            projection_size, args.num_attention_heads)
226
        self.num_attention_heads_per_partition = core.utils.divide(
227
            args.num_attention_heads, world_size)
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

        coeff = None
        self.norm_factor = math.sqrt(self.hidden_size_per_attention_head)
        if self.apply_query_key_layer_scaling:
            coeff = self.layer_number
            self.norm_factor *= coeff

        self.scale_mask_softmax = FusedScaleMaskSoftmax(
            self.fp16, self.bf16,
            self.attn_mask_type,
            args.masked_softmax_fusion,
            attention_mask_func,
            self.attention_softmax_in_fp32,
            coeff)

        # Dropout. Note that for a single iteration, this layer will generate
        # different outputs on different number of parallel partitions but
        # on average it should not be partition dependent.
        self.attention_dropout = torch.nn.Dropout(args.attention_dropout)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
247

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
    def forward(self, query_layer, key_layer,
                value_layer, attention_mask):

        # ===================================
        # Raw attention scores. [b, np, s, s]
        # ===================================

        # [b, np, sq, sk]
        output_size = (query_layer.size(1),
                       query_layer.size(2),
                       query_layer.size(0),
                       key_layer.size(0))

        # [sq, b, np, hn] -> [sq, b * np, hn]
        query_layer = query_layer.view(output_size[2],
                                       output_size[0] * output_size[1], -1)
        # [sk, b, np, hn] -> [sk, b * np, hn]
        key_layer = key_layer.view(output_size[3],
                                   output_size[0] * output_size[1], -1)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
268
        # preallocting input tensor: [b * np, sq, sk]
269
        matmul_input_buffer = mpu.get_global_memory_buffer().get_tensor(
270
            (output_size[0]*output_size[1], output_size[2], output_size[3]),
Vijay Korthikanti's avatar
Vijay Korthikanti committed
271
            query_layer.dtype, "mpu")
272
273
274

        # Raw attention scores. [b * np, sq, sk]
        matmul_result = torch.baddbmm(
Vijay Korthikanti's avatar
Vijay Korthikanti committed
275
            matmul_input_buffer,
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
            query_layer.transpose(0, 1),   # [b * np, sq, hn]
            key_layer.transpose(0, 1).transpose(1, 2),  # [b * np, hn, sk]
            beta=0.0, alpha=(1.0/self.norm_factor))

        # change view to [b, np, sq, sk]
        attention_scores = matmul_result.view(*output_size)

        # ===========================
        # Attention probs and dropout
        # ===========================

        # attention scores and attention mask [b, np, sq, sk]
        attention_probs = self.scale_mask_softmax(attention_scores,
                                                  attention_mask)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
293
        if not self.sequence_parallel:
294
            with tensor_parallel.get_cuda_rng_tracker().fork():
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                attention_probs = self.attention_dropout(attention_probs)
        else:
            attention_probs = self.attention_dropout(attention_probs)

        # =========================
        # Context layer. [sq, b, hp]
        # =========================

        # value_layer -> context layer.
        # [sk, b, np, hn] --> [b, np, sq, hn]

        # context layer shape: [b, np, sq, hn]
        output_size = (value_layer.size(1),
                       value_layer.size(2),
                       query_layer.size(0),
                       value_layer.size(3))

        # change view [sk, b * np, hn]
        value_layer = value_layer.view(value_layer.size(0),
                                       output_size[0] * output_size[1], -1)

        # change view [b * np, sq, sk]
        attention_probs = attention_probs.view(output_size[0] * output_size[1],
                                               output_size[2], -1)

        # matmul: [b * np, sq, hn]
        context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))

        # change view [b, np, sq, hn]
        context_layer = context_layer.view(*output_size)

        # [b, np, sq, hn] --> [sq, b, np, hn]
        context_layer = context_layer.permute(2, 0, 1, 3).contiguous()

        # [sq, b, np, hn] --> [sq, b, hp]
        new_context_layer_shape = context_layer.size()[:-2] + \
            (self.hidden_size_per_partition,)
        context_layer = context_layer.view(*new_context_layer_shape)

        return context_layer


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
class FlashSelfAttention(torch.nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
                 device=None, dtype=None):
        super().__init__()
        assert flash_attn_unpadded_func is not None, ('Please install FlashAttention first, '
                                                      'e.g., with pip install flash-attn')
        assert rearrange is not None, 'Please install einops first, e.g., with pip install einops'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

    def forward(self, q, k, v):
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q, k, v: The tensor containing the query, key, and value. (B, S, H, D)
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda
        batch_size, seqlen = q.shape[0], q.shape[1]
        q, k, v = [rearrange(x, 'b s ... -> (b s) ...') for x in [q, k, v]]
        max_s = seqlen
        cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                  device=q.device)
        output = flash_attn_unpadded_func(
            q, k, v, cu_seqlens, cu_seqlens, max_s, max_s,
            self.dropout_p if self.training else 0.0,
            softmax_scale=self.softmax_scale, causal=self.causal
        )
        output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
        return output


379
class ParallelAttention(MegatronModule):
380
381
    """Parallel self-attention layer abstract class.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
382
    Self-attention layer takes input with size [s, b, h]
383
384
    and returns output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
385

386
    def __init__(self, init_method,
387
388
389
390
                 output_layer_init_method, layer_number,
                 attention_type=AttnType.self_attn,
                 attn_mask_type=AttnMaskType.padding):
        super(ParallelAttention, self).__init__()
Mohammad's avatar
Mohammad committed
391
        args = get_args()
392
        self.layer_number = max(1, layer_number)
393
394
        self.attention_type = attention_type
        self.attn_mask_type = attn_mask_type
395
        self.params_dtype = args.params_dtype
396
397
398
399
400
401
402
403
404
405
406
407
408
        self.sequence_parallel = args.sequence_parallel

        self.use_flash_attn = args.use_flash_attn
        if self.use_flash_attn:
            if flash_attn_unpadded_func is None:
                raise ImportError('FlashAttention is not installed, please install with '
                                  'pip install flash-attn')
            assert attention_type == AttnType.self_attn, ('FlashAttention code path only supports '
                                                          'self-attention for now')
            assert self.attn_mask_type == AttnMaskType.causal, ('FlashAttention code path only '
                                                                'supports causal mask for now')
            if rearrange is None:
                raise ImportError('einops is not installed, please install with pip install einops')
409
410

        projection_size = args.kv_channels * args.num_attention_heads
411
412

        # Per attention head and per partition values.
413
        world_size = mpu.get_tensor_model_parallel_world_size()
414
        self.hidden_size_per_attention_head = core.utils.divide(
415
            projection_size, args.num_attention_heads)
416
        self.num_attention_heads_per_partition = core.utils.divide(
Mohammad's avatar
Mohammad committed
417
            args.num_attention_heads, world_size)
418
419

        # Strided linear layer.
420
        if attention_type == AttnType.self_attn:
421
            self.query_key_value = tensor_parallel.ColumnParallelLinear(
422
423
                args.hidden_size,
                3 * projection_size,
424
                bias=args.add_bias_linear,
425
                gather_output=False,
426
427
428
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
429
430
        else:
            assert attention_type == AttnType.cross_attn
431
            self.query = tensor_parallel.ColumnParallelLinear(
432
433
                args.hidden_size,
                projection_size,
434
                bias=args.add_bias_linear,
435
                gather_output=False,
436
437
438
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
439

440

441
            self.key_value = tensor_parallel.ColumnParallelLinear(
442
443
                args.hidden_size,
                2 * projection_size,
444
                bias=args.add_bias_linear,
445
                gather_output=False,
446
447
448
                init_method=init_method,
                async_tensor_model_parallel_allreduce=args.async_tensor_model_parallel_allreduce,
                **_args_to_kwargs())
449

450
451
        self.core_attention = CoreAttention(self.layer_number,
                                            self.attn_mask_type)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
452
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'
453

454
455
456
457
458
        if self.use_flash_attn:
            self.core_attention_flash = FlashSelfAttention(
                causal=True, attention_dropout=args.attention_dropout
            )

459
        # Output.
460
        self.dense = tensor_parallel.RowParallelLinear(
461
            projection_size,
Mohammad's avatar
Mohammad committed
462
            args.hidden_size,
463
            bias=args.add_bias_linear,
464
            input_is_parallel=True,
465
            init_method=output_layer_init_method,
466
467
            skip_bias_add=True,
            **_args_to_kwargs())
Vijay Korthikanti's avatar
Vijay Korthikanti committed
468

469
470
471
472
473
474
475
476
477
478
479
480
    def _checkpointed_attention_forward(self, query_layer, key_layer,
                                        value_layer, attention_mask):
        """Forward method with activation checkpointing."""
        def custom_forward(*inputs):
            query_layer = inputs[0]
            key_layer = inputs[1]
            value_layer = inputs[2]
            attention_mask = inputs[3]
            output_ = self.core_attention(query_layer, key_layer,
                                          value_layer, attention_mask)
            return output_

481
        hidden_states = tensor_parallel.checkpoint(
482
483
484
485
            custom_forward,
            False, query_layer, key_layer, value_layer, attention_mask)

        return hidden_states
486
487
488
489
490
491
492
493
494
495
496

    def _allocate_memory(self, inference_max_sequence_len, batch_size):
        return torch.empty(
            inference_max_sequence_len,
            batch_size,
            self.num_attention_heads_per_partition,
            self.hidden_size_per_attention_head,
            dtype=self.params_dtype,
            device=torch.cuda.current_device())

    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
497
                encoder_output=None, inference_params=None):
498
        # hidden_states: [sq, b, h]
499

500
501
502
        # =================================================
        # Pre-allocate memory for key-values for inference.
        # =================================================
Lawrence McAfee's avatar
Retro  
Lawrence McAfee committed
503

mshoeybi's avatar
mshoeybi committed
504
        if inference_params:
505
            if self.layer_number not in inference_params.key_value_memory_dict:
mshoeybi's avatar
mshoeybi committed
506
                inf_max_seq_len = inference_params.max_sequence_len
mshoeybi's avatar
mshoeybi committed
507
                inf_max_batch_size = inference_params.max_batch_size
508
                inference_key_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
509
                    inf_max_seq_len, inf_max_batch_size)
510
                inference_value_memory = self._allocate_memory(
mshoeybi's avatar
mshoeybi committed
511
                    inf_max_seq_len, inf_max_batch_size)
512
513
514
515
516
                inference_params.key_value_memory_dict[self.layer_number] = (
                    inference_key_memory, inference_value_memory)
            else:
                inference_key_memory, inference_value_memory = \
                    inference_params.key_value_memory_dict[self.layer_number]
mshoeybi's avatar
mshoeybi committed
517

518
519
520
        # =====================
        # Query, Key, and Value
        # =====================
521

522
523
524
525
526
527
528
529
530
531
532
533
534
        if self.attention_type == AttnType.self_attn:
            # Attention heads [sq, b, h] --> [sq, b, (np * 3 * hn)]
            mixed_x_layer, _ = self.query_key_value(hidden_states)

            # [sq, b, (np * 3 * hn)] --> [sq, b, np, 3 * hn]
            new_tensor_shape = mixed_x_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 3 * self.hidden_size_per_attention_head)
            mixed_x_layer = mixed_x_layer.view(*new_tensor_shape)

            # [sq, b, np, 3 * hn] --> 3 [sq, b, np, hn]
            (query_layer,
             key_layer,
535
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_x_layer, 3)
536
537
538
539
540
541
542
543
544
545
546
547
        else:
            # Attention heads [sk, b, h] --> [sk, b, (np * 2 * hn)]
            mixed_kv_layer, _ = self.key_value(encoder_output)

            # [sk, b, (np * 2 * hn)] --> [sk, b, np, 2 * hn]
            new_tensor_shape = mixed_kv_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 2 * self.hidden_size_per_attention_head)
            mixed_kv_layer = mixed_kv_layer.view(*new_tensor_shape)

            # [sk, b, np, 2 * hn] --> 2 [sk, b, np, hn]
            (key_layer,
548
             value_layer) = tensor_parallel.split_tensor_along_last_dim(mixed_kv_layer, 2)
549
550
551
552
553
554
555
556

            # Attention head [sq, b, h] --> [sq, b, hp]
            query_layer, _ = self.query(hidden_states)
            # [sq, b, hp] --> [sq, b, np, hn]
            new_tensor_shape = query_layer.size()[:-1] + \
                (self.num_attention_heads_per_partition,
                 self.hidden_size_per_attention_head)
            query_layer = query_layer.view(*new_tensor_shape)
557

mshoeybi's avatar
mshoeybi committed
558
559
560
        # ==================================
        # Adjust key and value for inference
        # ==================================
561

mshoeybi's avatar
mshoeybi committed
562
        if inference_params:
mshoeybi's avatar
mshoeybi committed
563
564
            batch_start = inference_params.batch_size_offset
            batch_end = batch_start + key_layer.size(1)
565
            assert batch_end <= inference_key_memory.size(1)
mshoeybi's avatar
mshoeybi committed
566
567
            sequence_start = inference_params.sequence_len_offset
            sequence_end = sequence_start + key_layer.size(0)
568
            assert sequence_end <= inference_key_memory.size(0)
569
            # Copy key and values.
570
571
572
573
574
            inference_key_memory[sequence_start:sequence_end,
                                 batch_start:batch_end, ...] = key_layer
            inference_value_memory[sequence_start:sequence_end,
                                   batch_start:batch_end, ...] = value_layer
            key_layer = inference_key_memory[
mshoeybi's avatar
mshoeybi committed
575
                :sequence_end, batch_start:batch_end, ...]
576
            value_layer = inference_value_memory[
mshoeybi's avatar
mshoeybi committed
577
                :sequence_end, batch_start:batch_end, ...]
578

579
580
581
        # ==================================
        # core attention computation
        # ==================================
582

583
584
585
586
587
588
589
        if not self.use_flash_attn:
            if self.checkpoint_core_attention:
                context_layer = self._checkpointed_attention_forward(
                    query_layer, key_layer, value_layer, attention_mask)
            else:
                context_layer = self.core_attention(
                    query_layer, key_layer, value_layer, attention_mask)
Vijay Korthikanti's avatar
Vijay Korthikanti committed
590
        else:
591
592
593
594
595
596
597
598
            q, k, v = [rearrange(x, 's b ... -> b s ...').contiguous()
                       for x in (query_layer, key_layer, value_layer)]
            if not self.sequence_parallel:
                with tensor_parallel.get_cuda_rng_tracker().fork():
                    context_layer = self.core_attention_flash(q, k, v)
            else:
                context_layer = self.core_attention_flash(q, k, v)
            context_layer = rearrange(context_layer, 'b s h d -> s b (h d)').contiguous()
599
600

        # =================
601
        # Output. [sq, b, h]
602
603
604
        # =================

        output, bias = self.dense(context_layer)
605

606
607
608
        return output, bias


609
def bias_dropout_add(x, bias, residual, prob, training):
610
    # type: (Tensor, Tensor, Tensor, float, bool) -> Tensor
611
612
613
    if bias is not None:
        x = x + bias
    out = torch.nn.functional.dropout(x, p=prob, training=training)
614
615
616
617
618
619
620
621
622
623
624
    out = residual + out
    return out


def get_bias_dropout_add(training):
    def _bias_dropout_add(x, bias, residual, prob):
        return bias_dropout_add(x, bias, residual, prob, training)
    return _bias_dropout_add


@torch.jit.script
625
626
627
628
def bias_dropout_add_fused_train(x: torch.Tensor,
                                 bias: torch.Tensor,
                                 residual: torch.Tensor,
                                 prob: float) -> torch.Tensor:
629
630
631
632
    return bias_dropout_add(x, bias, residual, prob, True)


@torch.jit.script
633
634
635
636
def bias_dropout_add_fused_inference(x: torch.Tensor,
                                     bias: torch.Tensor,
                                     residual: torch.Tensor,
                                     prob: float) -> torch.Tensor:
637
    return bias_dropout_add(x, bias, residual, prob, False)
638
639
640
641
642


class ParallelTransformerLayer(MegatronModule):
    """A single transformer layer.

Vijay Korthikanti's avatar
Vijay Korthikanti committed
643
    Transformer layer takes input with size [s, b, h] and returns an
644
645
    output of the same size.
    """
Neel Kant's avatar
Neel Kant committed
646

647
648
    def __init__(self, init_method, output_layer_init_method,
                 layer_number, layer_type=LayerType.encoder,
649
650
                 self_attn_mask_type=AttnMaskType.padding,
                 drop_path_rate=0.):
Mohammad's avatar
Mohammad committed
651
        args = get_args()
652
653

        super(ParallelTransformerLayer, self).__init__()
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
654
        self.layer_number = layer_number
655
        self.layer_type = layer_type
656
657

        self.apply_residual_connection_post_layernorm \
Mohammad's avatar
Mohammad committed
658
            = args.apply_residual_connection_post_layernorm
659

Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
660
661
662
        self.bf16 = args.bf16
        self.fp32_residual_connection = args.fp32_residual_connection

663
664
        # Layernorm on the input data.
        self.input_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
665
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
666
            eps=args.layernorm_epsilon,
667
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
668
            sequence_parallel=args.sequence_parallel)
669
670

        # Self attention.
671
672
673
674
675
676
        self.self_attention = ParallelAttention(
            init_method,
            output_layer_init_method,
            layer_number,
            attention_type=AttnType.self_attn,
            attn_mask_type=self_attn_mask_type)
677
678
        self.hidden_dropout = args.hidden_dropout
        self.bias_dropout_fusion = args.bias_dropout_fusion
Vijay Korthikanti's avatar
Vijay Korthikanti committed
679
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate > 0.0 else None
680

681
        # Layernorm on the attention output
682
        self.post_attention_layernorm = LayerNorm(
Mohammad's avatar
Mohammad committed
683
            args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
684
            eps=args.layernorm_epsilon,
685
            no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
686
            sequence_parallel=args.sequence_parallel)
687

688
689
690
691
692
693
694
695
696
        if self.layer_type == LayerType.decoder:
            self.inter_attention = ParallelAttention(
                init_method,
                output_layer_init_method,
                layer_number,
                attention_type=AttnType.cross_attn)
            # Layernorm on the attention output.
            self.post_inter_attention_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
697
                eps=args.layernorm_epsilon,
698
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
699
                sequence_parallel=args.sequence_parallel)
700

701
        # MLP
rprenger's avatar
rprenger committed
702
703
704
705
        if args.num_experts is not None:
            self.mlp = SwitchMLP(init_method, output_layer_init_method)
        else:
            self.mlp = ParallelMLP(init_method, output_layer_init_method)
706

707
708
709
710
711
712
713
        # Set bias+dropout+add fusion grad_enable execution handler.
        TORCH_MAJOR = int(torch.__version__.split('.')[0])
        TORCH_MINOR = int(torch.__version__.split('.')[1])
        use_nvfuser = TORCH_MAJOR > 1 or (TORCH_MAJOR == 1 and TORCH_MINOR >= 10)
        self.bias_dropout_add_exec_handler = \
                nullcontext if use_nvfuser else torch.enable_grad

714
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
715
716
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
717
        # hidden_states: [s, b, h]
718

719
        # Layer norm at the beginning of the transformer layer.
720
721
        layernorm_output = self.input_layernorm(hidden_states)
        # Self attention.
722
        attention_output, attention_bias = \
723
724
725
            self.self_attention(
                layernorm_output,
                attention_mask,
mshoeybi's avatar
mshoeybi committed
726
                inference_params=inference_params)
727

728
729
        # Residual connection.
        if self.apply_residual_connection_post_layernorm:
730
731
732
733
            residual = layernorm_output
        else:
            residual = hidden_states

Vijay Korthikanti's avatar
Vijay Korthikanti committed
734
        if self.drop_path is None:
735
736
737
738
739
740
741
742
743
            # jit scripting for a nn.module (with dropout) is not
            # trigerring the fusion kernel. For now, we use two
            # different nn.functional routines to account for varying
            # dropout semantics during training and inference phases.
            if self.bias_dropout_fusion:
                if self.training:
                    bias_dropout_add_func = bias_dropout_add_fused_train
                else:
                    bias_dropout_add_func = bias_dropout_add_fused_inference
744
            else:
745
                bias_dropout_add_func = get_bias_dropout_add(self.training)
746

747
748
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)
749
            with self.bias_dropout_add_exec_handler():
750
751
                layernorm_input = bias_dropout_add_func(
                    attention_output,
752
                    attention_bias,
753
754
755
756
757
758
759
                    residual,
                    self.hidden_dropout)
        else:
            out = torch.nn.functional.dropout(attention_output + attention_bias,
                                              p=self.hidden_dropout,
                                              training=self.training)
            layernorm_input = residual + self.drop_path(out)
760

761
762
763
        # Layer norm post the self attention.
        layernorm_output = self.post_attention_layernorm(layernorm_input)

764
765
766
767
768
769
770
771
772
773
774
        if self.layer_type == LayerType.decoder:
            attention_output, attention_bias = \
                self.inter_attention(layernorm_output,
                                     enc_dec_attn_mask,
                                     encoder_output=encoder_output)
            # residual connection
            if self.apply_residual_connection_post_layernorm:
                residual = layernorm_output
            else:
                residual = layernorm_input

775
776
777
            if attention_bias is not None:
                attention_bias = attention_bias.expand_as(residual)

778
            with self.bias_dropout_add_exec_handler():
779
780
                layernorm_input = bias_dropout_add_func(
                    attention_output,
781
                    attention_bias,
782
783
784
785
786
787
                    residual,
                    self.hidden_dropout)

            # Layer norm post the decoder attention
            layernorm_output = self.post_inter_attention_layernorm(layernorm_input)

788
        # MLP.
789
        mlp_output, mlp_bias = self.mlp(layernorm_output)
790

791
792
        # Second residual connection.
        if self.apply_residual_connection_post_layernorm:
793
            residual = layernorm_output
794
        else:
795
796
            residual = layernorm_input

Vijay Korthikanti's avatar
Vijay Korthikanti committed
797
        if self.drop_path is None:
798
799
            if mlp_bias is not None:
                mlp_bias = mlp_bias.expand_as(residual)
800
            with self.bias_dropout_add_exec_handler():
801
802
                output = bias_dropout_add_func(
                    mlp_output,
803
                    mlp_bias,
804
805
                    residual,
                    self.hidden_dropout)
806
807
808
809
810
811
812

            # Jit compiled function creates 'view' tensor. This tensor
            # potentially gets saved in the MPU checkpoint function context,
            # which rejects view tensors. While making a viewless tensor here
            # won't result in memory savings (like the data loader, or
            # p2p_communication), it serves to document the origin of this
            # 'view' tensor.
813
814
815
            output = core.utils.make_viewless_tensor(inp = output,
                                                     requires_grad = output.requires_grad,
                                                     keep_graph = True)
816

817
        else:
818
819
820
            if mlp_bias is not None:
                mlp_output = mlp_output + mlp_bias
            out = torch.nn.functional.dropout(mlp_output,
821
822
823
                                              p=self.hidden_dropout,
                                              training=self.training)
            output = residual + self.drop_path(out)
824
825
826
827

        return output


828
829
830
class NoopTransformerLayer(MegatronModule):
    """A single 'no-op' transformer layer.

Lawrence McAfee's avatar
Lawrence McAfee committed
831
    The sole purpose of this layer is for when a standalone embedding layer
832
    is used (i.e., args.standalone_embedding_stage == True). In this case,
Lawrence McAfee's avatar
Lawrence McAfee committed
833
834
835
836
837
838
839
840
841
    zero transformer layers are assigned when pipeline rank == 0. Additionally,
    when virtual pipeline rank >= 1, zero total model parameters are created
    (virtual rank 0 contains the input embedding). This results in the model's
    input and output tensors being the same, which causes an error when
    performing certain memory optimiations on the output tensor (e.g.,
    deallocating it). Thus, this layer disconnects the input from the output
    via a clone. Since ranks containing a no-op layer are generally under-
    utilized (both compute and memory), there's no worry of any performance
    degredation.
842
843
844
845
846
847
848
849
850
851
852
853
    """

    def __init__(self, layer_number):
        super().__init__()
        self.layer_number = layer_number

    def forward(self, hidden_states, attention_mask,
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
        return hidden_states.clone()


Jared Casper's avatar
Jared Casper committed
854
def _get_num_layers(args, is_encoder_and_decoder_model, is_decoder=False):
855
    """Compute the number of transformer layers resident on the current rank."""
Jared Casper's avatar
Jared Casper committed
856
    if mpu.get_pipeline_model_parallel_world_size() > 1:
857
858
859
860
861
862
863
864
865
866
867
868
869
        if is_encoder_and_decoder_model:
            assert args.pipeline_model_parallel_split_rank is not None

            # When a standalone embedding stage is used, a rank is taken from
            # the encoder's ranks, to be used for the encoder's embedding
            # layer. This way, the rank referenced by the 'split rank' remains
            # the same whether or not a standalone embedding stage is used.
            num_ranks_in_encoder = (
                args.pipeline_model_parallel_split_rank - 1
                if args.standalone_embedding_stage else
                args.pipeline_model_parallel_split_rank
            )
            num_ranks_in_decoder = args.transformer_pipeline_model_parallel_size - num_ranks_in_encoder
Jared Casper's avatar
Jared Casper committed
870
871
872
873
            assert args.encoder_num_layers % num_ranks_in_encoder == 0, \
                    'encoder_num_layers (%d) must be divisible by number of ranks given to encoder (%d)' % (args.encoder_num_layers, num_ranks_in_encoder)
            assert args.decoder_num_layers % num_ranks_in_decoder == 0, \
                    'decoder_num_layers (%d) must be divisible by number of ranks given to decoder (%d)' % (args.decoder_num_layers, num_ranks_in_decoder)
Jared Casper's avatar
Jared Casper committed
874
            if mpu.is_pipeline_stage_before_split():
875
876
877
                num_layers = (
                    0
                    if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
878
                    and mpu.get_pipeline_model_parallel_rank() == 0 else
Jared Casper's avatar
Jared Casper committed
879
                    args.encoder_num_layers // num_ranks_in_encoder
880
881
                )
            else:
Jared Casper's avatar
Jared Casper committed
882
                num_layers = args.decoder_num_layers // num_ranks_in_decoder
883
        else:
Jared Casper's avatar
Jared Casper committed
884
            assert args.num_layers == args.encoder_num_layers
885
886
887
888
889
890
891
892
893
894
            assert args.num_layers % args.transformer_pipeline_model_parallel_size == 0, \
                'num_layers must be divisible by transformer_pipeline_model_parallel_size'

            # When a standalone embedding stage is used, all transformer layers
            # are divided among pipeline rank >= 1, while on pipeline rank 0,
            # ranks either contain the input embedding layer (virtual pp rank 0),
            # or no layers at all (virtual pp rank >= 1).
            num_layers = (
                0
                if args.standalone_embedding_stage
Jared Casper's avatar
Jared Casper committed
895
                and mpu.get_pipeline_model_parallel_rank() == 0 else
896
897
898
                args.num_layers // args.transformer_pipeline_model_parallel_size
            )
    else:
Jared Casper's avatar
Jared Casper committed
899
900
901
902
        if not is_decoder:
            num_layers = args.encoder_num_layers
        else:
            num_layers = args.decoder_num_layers
903
904
905
    return num_layers


906
907
908
class ParallelTransformer(MegatronModule):
    """Transformer class."""

909
    def __init__(self, init_method, output_layer_init_method,
910
                 layer_type=LayerType.encoder,
911
                 self_attn_mask_type=AttnMaskType.padding,
912
                 post_layer_norm=True,
913
914
                 pre_process=True, post_process=True,
                 drop_path_rate=0.0):
915
        super(ParallelTransformer, self).__init__()
Mohammad's avatar
Mohammad committed
916
        args = get_args()
917

918
919
        self.layer_type = layer_type
        self.model_type = args.model_type
Mohammad Shoeybi's avatar
Mohammad Shoeybi committed
920
        self.bf16 = args.bf16
921
        self.fp32_residual_connection = args.fp32_residual_connection
922
        self.post_layer_norm = post_layer_norm
923
924
925
        self.pre_process = pre_process
        self.post_process = post_process
        self.input_tensor = None
926
        self.drop_path_rate = drop_path_rate
927
        self.transformer_impl = args.transformer_impl
928

929
        # Store activation checkpoiting flag.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
930
931
932
        self.recompute_granularity = args.recompute_granularity
        self.recompute_method = args.recompute_method
        self.recompute_num_layers = args.recompute_num_layers
Vijay Korthikanti's avatar
Vijay Korthikanti committed
933
934
        self.distribute_saved_activations = \
            args.distribute_saved_activations and not args.sequence_parallel
935

Vijay Korthikanti's avatar
Vijay Korthikanti committed
936
        self.sequence_parallel = args.sequence_parallel
937

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
        # Transformer Engine Init.
        if self.transformer_impl == 'transformer_engine':
            global transformer_engine
            import transformer_engine
        self.use_fp8 = args.fp8_e4m3 or args.fp8_hybrid
        self.fp8_recipe = None
        self.fp8_group = mpu.get_data_parallel_group()
        if self.use_fp8:
            if args.fp8_e4m3:
                fp8_format = transformer_engine.common.recipe.Format.E4M3
            elif args.fp8_hybrid:
                fp8_format = transformer_engine.common.recipe.Format.HYBRID
            self.fp8_recipe = transformer_engine.common.recipe.DelayedScaling(
                margin=args.fp8_margin,
                interval=args.fp8_interval,
                fp8_format=fp8_format,
                amax_history_len=args.fp8_amax_history_len,
                amax_compute_algo=args.fp8_amax_compute_algo,
                override_linear_precision=(False, False, not args.fp8_wgrad),
            )

        self.num_microbatches_in_previous_step = -1
        self.microbatch_count = 0
        self.checkpoint_core_attention = args.recompute_granularity == 'selective'

963
        # Number of layers.
964
        self.num_layers = _get_num_layers(
965
966
967
            args,
            args.model_type == ModelType.encoder_and_decoder,
            layer_type == LayerType.decoder)
Mohammad's avatar
Mohammad committed
968

Vijay Korthikanti's avatar
Vijay Korthikanti committed
969
        self.drop_path_rates = [rate.item() for rate in torch.linspace(0, self.drop_path_rate, args.num_layers)]
970

Mohammad's avatar
Mohammad committed
971
972
        # Transformer layers.
        def build_layer(layer_number):
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
            if args.transformer_impl == 'local':
                return ParallelTransformerLayer(
                    init_method,
                    output_layer_init_method,
                    layer_number,
                    layer_type=layer_type,
                    self_attn_mask_type=self_attn_mask_type,
                    drop_path_rate=self.drop_path_rates[layer_number - 1])
            else:
                return transformer_engine.pytorch.TransformerLayer(
                    args.hidden_size,
                    args.ffn_hidden_size,
                    args.num_attention_heads,
                    layernorm_epsilon=args.layernorm_epsilon,
                    hidden_dropout=args.hidden_dropout,
                    attention_dropout=args.attention_dropout,
                    init_method=init_method,
                    output_layer_init_method=output_layer_init_method,
                    layer_number=layer_number,
                    kv_channels=args.kv_channels,
                    self_attn_mask_type=self_attn_mask_type.name,
                    tp_group=mpu.get_tensor_model_parallel_group(),
                    get_rng_state_tracker=tensor_parallel.get_cuda_rng_tracker,
                    fuse_wgrad_accumulation=args.gradient_accumulation_fusion,
                    apply_query_key_layer_scaling=args.apply_query_key_layer_scaling,
                    attention_softmax_in_fp32=args.attention_softmax_in_fp32,
                    seq_length=args.seq_length,
                    micro_batch_size=args.micro_batch_size,
                    sequence_parallel=args.sequence_parallel,
                    params_dtype=args.params_dtype,
                    apply_residual_connection_post_layernorm=args.apply_residual_connection_post_layernorm,
                    output_layernorm=False,
                    layer_type="encoder",
                    drop_path_rate=self.drop_path_rates[layer_number - 1],
                    set_parallel_mode=True,
                    fuse_qkv_params=True)

1010
1011
        if args.virtual_pipeline_model_parallel_size is not None:
            assert args.num_layers % args.virtual_pipeline_model_parallel_size == 0, \
1012
1013
                'num_layers_per_stage must be divisible by ' \
                'virtual_pipeline_model_parallel_size'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1014
            assert args.model_type != ModelType.encoder_and_decoder
1015
1016
            # Number of layers in each model chunk is the number of layers in the stage,
            # divided by the number of model chunks in a stage.
1017
            self.num_layers = self.num_layers // args.virtual_pipeline_model_parallel_size
1018
1019
1020
1021
1022
1023
1024
1025
            # With 8 layers, 2 stages, and 4 model chunks, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0]  [2]  [4]  [6]
            # Stage 1: [1]  [3]  [5]  [7]
            # With 8 layers, 2 stages, and 2 virtual stages, we want an assignment of
            # layers to stages like (each list is a model chunk):
            # Stage 0: [0, 1]  [4, 5]
            # Stage 1: [2, 3]  [6, 7]
1026
            offset = mpu.get_virtual_pipeline_model_parallel_rank() * (
1027
                args.num_layers // args.virtual_pipeline_model_parallel_size) + \
1028
                (mpu.get_pipeline_model_parallel_rank() * self.num_layers)
1029
        else:
1030
            # Each stage gets a contiguous set of layers.
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1031
            if args.model_type == ModelType.encoder_and_decoder and \
1032
1033
                    mpu.get_pipeline_model_parallel_world_size() > 1:
                pipeline_rank = mpu.get_pipeline_model_parallel_rank()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1034
1035
1036
1037
1038
1039
                if layer_type == LayerType.encoder:
                    offset = pipeline_rank * self.num_layers
                else:
                    num_ranks_in_enc = args.pipeline_model_parallel_split_rank
                    offset = (pipeline_rank - num_ranks_in_enc) * self.num_layers
            else:
1040
                offset = mpu.get_pipeline_model_parallel_rank() * self.num_layers
1041

1042
        if self.num_layers == 0:
Lawrence McAfee's avatar
Lawrence McAfee committed
1043
            # When a standalone embedding stage is used (e.g.,
1044
            # args.standalone_embedding_stage == True), virtual pipeline ranks
1045
            # on pipeline rank 0 will have zero transformer layers assigned to
Lawrence McAfee's avatar
Lawrence McAfee committed
1046
1047
1048
1049
1050
            # them. This results in the model's input and output tensors to be
            # the same, which will cause failure for certain output tensor
            # optimizations (e.g., pipeline output deallocation). To remedy
            # this, we assign a 'no-op' layer on these ranks, which will
            # disconnect the input tensor from the output tensor.
1051
1052
1053
1054
1055
            self.num_layers = 1
            self.layers = torch.nn.ModuleList([ NoopTransformerLayer(1) ])
        else:
            self.layers = torch.nn.ModuleList(
                [build_layer(i + 1 + offset) for i in range(self.num_layers)])
1056

1057
        if self.post_process and self.post_layer_norm:
1058
1059
1060
            # Final layer norm before output.
            self.final_layernorm = LayerNorm(
                args.hidden_size,
Sangkug Lym's avatar
Sangkug Lym committed
1061
                eps=args.layernorm_epsilon,
1062
                no_persist_layer_norm=args.no_persist_layer_norm,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1063
                sequence_parallel=args.sequence_parallel)
1064

Mohammad's avatar
Mohammad committed
1065
    def _get_layer(self, layer_number):
1066
        return self.layers[layer_number]
Mohammad's avatar
Mohammad committed
1067

1068
    def _checkpointed_forward(self, hidden_states, attention_mask,
1069
                              encoder_output, enc_dec_attn_mask, is_first_microbatch):
1070
        """Forward method with activation checkpointing."""
1071
1072
        def custom(start, end, is_transformer_engine=False):
            def custom_forward(*args, **kwargs):
1073
                x_, *args = args
Mohammad's avatar
Mohammad committed
1074
1075
                for index in range(start, end):
                    layer = self._get_layer(index)
1076
                    x_ = layer(x_, *args, **kwargs)
1077
                return x_
1078
1079
1080
1081
1082
1083
            def custom_forward_transformer_engine(*args, **kwargs):
                return custom_forward(*args, is_first_microbatch=is_first_microbatch, **kwargs)
            if not is_transformer_engine:
                return custom_forward
            else:
                return custom_forward_transformer_engine
1084

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1085
        if self.recompute_method == 'uniform':
1086
1087
1088
1089
1090
            # Uniformly divide the total number of Transformer layers and checkpoint
            # the input activation of each divided chunk.
            # A method to further reduce memory usage reducing checkpoints.
            l = 0
            while l < self.num_layers:
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
                if self.transformer_impl == 'transformer_engine':
                    hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                        custom(l, l + self.recompute_num_layers, is_transformer_engine=True),
                        self.distribute_saved_activations,
                        tensor_parallel.get_cuda_rng_tracker,
                        mpu.get_tensor_model_parallel_group(),
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                else:
                    hidden_states = tensor_parallel.checkpoint(
                        custom(l, l + self.recompute_num_layers),
                        self.distribute_saved_activations,
                        hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1104
                l += self.recompute_num_layers
1105

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1106
        elif self.recompute_method == 'block':
1107
1108
1109
1110
            # Checkpoint the input activation of only a set number of individual
            # Transformer layers and skip the rest.
            # A method fully use the device memory removing redundant re-computation.
            for l in range(self.num_layers):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1111
                if l < self.recompute_num_layers:
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = transformer_engine.pytorch.distributed.checkpoint(
                            custom(l, l + 1, is_transformer_engine=True),
                            self.distribute_saved_activations,
                            tensor_parallel.get_cuda_rng_tracker,
                            mpu.get_tensor_model_parallel_group(),
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = tensor_parallel.checkpoint(
                            custom(l, l + 1),
                            self.distribute_saved_activations,
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1124
                else:
1125
1126
1127
1128
1129
1130
                    if self.transformer_impl == 'transformer_engine':
                        hidden_states = custom(l, l + 1, is_transformer_engine=True)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
                    else:
                        hidden_states = custom(l, l + 1)(
                            hidden_states, attention_mask, encoder_output, enc_dec_attn_mask)
1131
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1132
            raise ValueError("Invalid activation recompute method.")
1133
1134
1135

        return hidden_states

1136
    def set_input_tensor(self, input_tensor):
1137
1138
1139
1140
1141
1142
1143
        """Set input tensor to be used instead of forward()'s input.

        When doing pipeline parallelism the input from the previous
        stage comes from communication, not from the input, so the
        model's forward_step_func won't have it. This function is thus
        used by internal code to bypass the input provided by the
        forward_step_func"""
1144
1145
        self.input_tensor = input_tensor

1146
    def forward(self, hidden_states, attention_mask,
mshoeybi's avatar
mshoeybi committed
1147
1148
                encoder_output=None, enc_dec_attn_mask=None,
                inference_params=None):
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1149
1150
        # hidden_states: [s, b, h]

1151
        # Checks.
mshoeybi's avatar
mshoeybi committed
1152
        if inference_params:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1153
            assert self.recompute_granularity is None, \
1154
                'inference does not work with activation checkpointing'
1155

1156
        if not self.pre_process:
1157
            # See set_input_tensor()
1158
            hidden_states = self.input_tensor
1159

1160
1161
        # Viewless tensor.
        # - We only need to create a viewless tensor in the case of micro batch
1162
1163
1164
1165
        #   size (mbs) == 1, since in this case, 'hidden_states.transpose()'
        #   above creates a view tensor, and '.contiguous()' is a pass-through.
        #   For mbs >= 2, '.contiguous()' creates a new tensor, eliminating
        #   the need to make it viewless.
1166
1167
1168
1169
        #
        #   However, we don't explicitly check mbs == 1 here because
        #   make_viewless_tensor() has negligible overhead when its input
        #   is already viewless.
1170
        #
1171
1172
1173
1174
        # - For the 'else' case above, calling make_viewless_tensor() here is
        #   likely redundant, since p2p_communication.py (likely originator)
        #   already creates viewless tensors. That said, make_viewless_tensor()
        #   is called here to be future-proof and corner-case-proof.
1175
        hidden_states = core.utils.make_viewless_tensor(
1176
            hidden_states,
1177
1178
            requires_grad=True,
            keep_graph=True,
1179
1180
        )

Vijay Korthikanti's avatar
Vijay Korthikanti committed
1181
        if self.sequence_parallel:
1182
            rng_context = tensor_parallel.get_cuda_rng_tracker().fork()
1183
        else:
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1184
            rng_context = nullcontext()
Vijay Korthikanti's avatar
Vijay Korthikanti committed
1185
1186

        with rng_context:
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
            # The fp8_autocast context manager is a no-op when enabled=True
            # The if...else serves to short circuit name resolution for fp8_autocast
            with transformer_engine.pytorch.fp8_autocast(
                enabled=self.use_fp8,
                fp8_recipe=self.fp8_recipe,
                fp8_group=self.fp8_group
            ) if self.use_fp8 else nullcontext():
                # Determine if the current iteration is first microbatch
                if self.num_microbatches_in_previous_step != get_num_microbatches():
                    self.microbatch_count = 0 # Reset count on new batch size rampup interval
                self.num_microbatches_in_previous_step = get_num_microbatches()
                is_first_microbatch = self.microbatch_count % get_num_microbatches() == 0

                # Forward pass.
                if self.recompute_granularity == 'full':
                    hidden_states = self._checkpointed_forward(hidden_states,
                                                               attention_mask,
                                                               encoder_output,
                                                               enc_dec_attn_mask,
                                                               is_first_microbatch)
                else:
                    forward_kwargs = {
                        'encoder_output': encoder_output,
                        'enc_dec_attn_mask': enc_dec_attn_mask,
                        'inference_params': inference_params,
                    }

                    if self.transformer_impl == 'transformer_engine':
                        forward_kwargs['is_first_microbatch'] = is_first_microbatch
                        forward_kwargs['checkpoint_core_attention'] = self.checkpoint_core_attention

                    for index in range(self.num_layers):
                        layer = self._get_layer(index)

                        hidden_states = layer(
                            hidden_states,
                            attention_mask,
                            **forward_kwargs)

                # Skip counter update for eval and activation checkpointing
                if torch.is_grad_enabled() and self.training:
                    self.microbatch_count += 1
mshoeybi's avatar
mshoeybi committed
1229

1230
        # Final layer norm.
1231
        if self.post_process and self.post_layer_norm:
1232
1233
            hidden_states = self.final_layernorm(hidden_states)

1234
        return hidden_states