arguments.py 29.6 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
Mohammad's avatar
Mohammad committed
43
44
45
46

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
47

Mohammad's avatar
Mohammad committed
48
    # Parse.
49
50
51
52
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
53

Mohammad's avatar
Mohammad committed
54
55
56
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
57
    # Tensor model parallel size.
58
59
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
60
61
62
63
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
64
65
66
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
67
    # Checks.
68
69
70
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
mohammad's avatar
mohammad committed
71
72
73
        ' divisible by tensor parallel size ({}) times pipeline paralle ' \
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
74
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
75
    if args.rank == 0:
mohammad's avatar
mohammad committed
76
77
78
79
80
81
82
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

83
84
85
86
87
88
89
90
91
92
93
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

mohammad's avatar
mohammad committed
94
95
96
97
98
99
100
101
102
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
Mohammad's avatar
Mohammad committed
103

104
105
106
107
108
109
110
111
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

112
113
114
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
115

Mohammad's avatar
Mohammad committed
116
117
    # Set input defaults.
    for key in defaults:
Mohammad's avatar
Mohammad committed
118
119
120
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
Raul Puri's avatar
Raul Puri committed
121
        if getattr(args, key) is not None:
Raul Puri's avatar
Raul Puri committed
122
            if args.rank == 0:
Raul Puri's avatar
Raul Puri committed
123
124
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
Raul Puri's avatar
Raul Puri committed
125
126
                                               v2=getattr(args, key)),
                                               flush=True)
Raul Puri's avatar
Raul Puri committed
127
128
        else:
            setattr(args, key, defaults[key])
Mohammad's avatar
Mohammad committed
129

130
131
132
133
134
135
136
137
138
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
139
            'expected iteration-based learning rate warmup'
140
141
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
142
        if args.lr_warmup_fraction is not None:
143
            assert args.lr_warmup_iters == 0, \
144
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
145
146
147
148
149
150
151
152
153
154
155

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
156
        if args.lr_warmup_fraction is not None:
157
            assert args.lr_warmup_samples == 0, \
158
                'can only specify one of lr-warmup-fraction and lr-warmup-samples'
159

160
    # Check required arguments.
Mohammad's avatar
Mohammad committed
161
162
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
163
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
164
        _check_arg_is_not_none(args, req_arg)
165

Mohammad's avatar
Mohammad committed
166
167
    # Checks.
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
168
169
170
171
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
172
173
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
174
175
176
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
177
178
    if args.fp32_residual_connection:
        assert args.fp16, \
mshoeybi's avatar
mshoeybi committed
179
            'residual connection in fp32 only supported when using fp16.'
mohammad's avatar
mohammad committed
180
181
182
183
184
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Mohammad's avatar
Mohammad committed
185

186
    if args.scaled_masked_softmax_fusion:
187
188
189
190
191
192
193
194
        if args.scaled_upper_triang_masked_softmax_fusion:
            fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()
        else:
            fused_kernels.load_scaled_masked_softmax_fusion_kernel()
    else:
        # This argument will eventually go away, for now make sure it is off
        # if scaled_masked_softmax_fusion is off.
        args.scaled_upper_triang_masked_softmax_fusion = False
195

196
197
198
199
    # Load mixed precision fused layer norm.
    if args.fp32_residual_connection:
        fused_kernels.load_fused_mix_prec_layer_norm_kernel()

Mohammad's avatar
Mohammad committed
200
201
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
202
203


Mohammad's avatar
Mohammad committed
204
205
206
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
207
208
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
209
210
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
211
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
212
213
214
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
215
216
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
217
218


219
220
221
222
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
223
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
224
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
225

226
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
227
                       help='Number of transformer layers.')
228
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
229
                       help='Tansformer hidden size.')
230
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
231
                       help='Number of transformer attention heads.')
232
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
233
234
235
236
237
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
238
239
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
240
241
242
243
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
244
245
246
247
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
248
    group.add_argument('--onnx-safe', type=bool, required=False,
249
                       help='Use workarounds for known problems with Torch ONNX exporter')
Mohammad's avatar
Mohammad committed
250

Mohammad's avatar
Mohammad committed
251
252
253
    return parser


Mohammad's avatar
Mohammad committed
254
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
255
256
257
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
258
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
259
260
261
262
263
264
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
265
266
267
268
269
270
271
    group.add_argument('--adam-beta1', type=float, default=0.9,
                       help='First coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-beta2', type=float, default=0.999,
                       help='Second coefficient for computing running averages of'
                       'gradient and its square')
    group.add_argument('--adam-eps', type=float, default=1e-08,
272
                       help='Term added to the denominator to improve'
273
                       'numerical stability')
Mohammad's avatar
Mohammad committed
274
275
276

    return parser

Mohammad's avatar
Mohammad committed
277
278

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
279
280
    group = parser.add_argument_group(title='training')

281
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
282
283
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
284
                       'parallel size times number of micro batches.')
285
286
287
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
288
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
289
290
291
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
292
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
293
294
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
295
296
297
298
299
300
301
302
303
304
305
306
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
307
308
309
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
310
311
312
313
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
314
315
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
316
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
317
                       help='Total number of iterations to train over all '
318
319
320
321
322
323
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
324
325
326
327
328
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
329
330
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
331
332
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
333
334
335
336
337
    group.add_argument('--no-scaled-masked-softmax-fusion',
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
                       dest='scaled_masked_softmax_fusion')
338
    group.add_argument('--scaled-upper-triang-masked-softmax-fusion',
339
340
341
342
343
344
345
346
347
348
                       type=bool,
                       help='Use upper triangular version of fused '
                       'scale, mask, softmax fusion kernel (default for GPT). '
                       '- DEPRECATED')
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
Mohammad's avatar
Mohammad committed
349
350
351
352

    return parser


Mohammad's avatar
Mohammad committed
353
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
354
355
356
357
358
359
360
361
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
Mohammad's avatar
Mohammad committed
362

Mohammad's avatar
Mohammad committed
363
364
365
    return parser


Mohammad's avatar
Mohammad committed
366
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
367
368
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
369
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
370
371
372
373
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
374
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
375
376
377
378
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
379
380
381
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
382
383
384
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
385
386
387
388
389
390
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
391
392
393
    group.add_argument('--warmup', type=int, default=None,
                       help='Old lr warmup argument, do not use. Use one of the '
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
412
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
    group.add_argument('--no-save-optim', action='store_true',
                       help='Do not save current optimizer.')
    group.add_argument('--no-save-rng', action='store_true',
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
    group.add_argument('--no-load-optim', action='store_true',
                       help='Do not load optimizer when loading checkpoint.')
    group.add_argument('--no-load-rng', action='store_true',
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
437
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
438
439
440
441
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
mohammad's avatar
mohammad committed
442
443
444
445
446
447
448
449
450
451
452
453
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
454
455
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
456
457
458
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
459
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
460
461
462
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad's avatar
Mohammad committed
463
464
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
465
466
467
468
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
469
470
471
    return parser


Mohammad's avatar
Mohammad committed
472
def _add_distributed_args(parser):
473
474
    group = parser.add_argument_group(title='distributed')

475
476
477
478
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
479
480
481
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
Mohammad's avatar
Mohammad committed
482
483
484
485
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
486
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
487
488
489
490
                       help='which DistributedDataParallel implementation '
                       'to use.')
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
491
492
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
                       help='If set to True, initialize_megatron() skips DDP initialization'
Boris Fomitchev's avatar
Boris Fomitchev committed
493
494
                       ' and returns function to complete it instead.'
                       'Also turns on --use-cpu-initialization flag.'
495
                       'This is for external DDP manager.' )
496
497
    group.add_argument('--use-cpu-initialization', action='store_true',
                       help='If set, affine parallel weights initialization uses CPU' )
Mohammad's avatar
Mohammad committed
498
499
500
    return parser


Mohammad's avatar
Mohammad committed
501
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
502
503
504
505
506
507
508
509
510
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
511
512
513
    return parser


Mohammad's avatar
Mohammad committed
514
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
515
516
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
517
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
518
519
520
521
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
522
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
523
524
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
525
526
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
527
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
528
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
529
530
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
531
    group.add_argument('--seq-length', type=int, default=None,
Mohammad's avatar
Mohammad committed
532
533
534
535
536
537
538
539
540
                       help="Maximum sequence length to process.")
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
541
542
543
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
544
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
545
546
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
547
548
549
550
551
552
553
554
555
556
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
557

Mohammad's avatar
Mohammad committed
558
559
    return parser

Raul Puri's avatar
Raul Puri committed
560

Mohammad's avatar
Mohammad committed
561
562
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
563

Mohammad's avatar
Mohammad committed
564
565
566
567
568
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
569

Mohammad's avatar
Mohammad committed
570
    return parser
Neel Kant's avatar
Neel Kant committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
                       help='Size of block embeddings to be used in ICT and REALM (paper default: 128)')

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
                       help='Directory containing an BertModel checkpoint (needed to start ICT and REALM)')

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
                       help='Probability of keeping query in block for ICT dataset')
Neel Kant's avatar
Neel Kant committed
591
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
592
593
                       help='Whether to use one sentence documents in ICT')

594
595
596
597
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
598
599
600
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
601
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
602
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
603
604
605
606
607
608

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
                       help='How large of batches to use when doing indexing jobs')
    group.add_argument('--indexer-log-interval', type=int, default=1000,
                       help='After how many batches should the indexer report progress')
Neel Kant's avatar
Neel Kant committed
609
    return parser