distrib_optimizer.py 22.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29

Lawrence McAfee's avatar
Lawrence McAfee committed
30

31
class Range:
Lawrence McAfee's avatar
Lawrence McAfee committed
32
33
34
    '''A range represents a start and end points for indexing a shard
    from a full tensor.
    '''
35
36
37
38
39
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
40
        return Range(start, start + self.size)
41
42
43
44
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


45
class DistributedOptimizer(MixedPrecisionOptimizer):
Lawrence McAfee's avatar
Lawrence McAfee committed
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    '''Distributed optimizer, for all data types (fp16, bf16, and fp32).

    Arguments:
        optimizer: base optimizer such as Adam or SGD
        clip_grad: clip gradeints with this global L2 norm. Note
            that clipping is ignored if clip_grad == 0
        log_num_zeros_in_grad: return number of zeros in the gradients.
        params_have_main_grad: flag indicating if parameters have
            a `main_grad` field. If this is set, we are assuming
            that the model parameters are store in the `main_grad`
            field instead of the typical `grad` field. This happens
            for the DDP cases where there is a continuous buffer
            holding the gradients. For example for bfloat16, we want
            to do gradient accumulation and all-reduces in float32
            and as a result we store those gradients in the main_grad.
            Note that main grad is not necessarily in float32.
        use_contiguous_buffers_in_local_ddp: if true, the local DDP model
            is using a contiguous buffer to hold the model grads.
        fp16: if true, the model is running in fp16.
        bf16: if true, the model is running in bfloat16.
        grad_scaler: used for scaling gradients. Note that this can be
            None. This case happens when `bf16 = True` and we don't
            use any loss scale. Note that for `bf16 = True`, we can have
            a constnat gradient scaler. Also for `bf16 = False`, we
            always require a grad scaler.
        models: list of models (i.e., the virtual pipelining models). This
            is used by the distributed optimizer for mapping parameters.
    '''
74
75

    @classmethod
76
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
77

78
        # Param range map.
79
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
80
        param_range_map = {}
81
82
        for param, param_world_indexes in param_world_index_map.items():

83
            # Param range.
84
85
86
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
87
                param_world_start - gbuf_world_range.start)
88
            param_local_end = min(
89
90
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)
91

92
            # Add param, if within local gbuf range.
93
            if param_local_end > param_local_start:
94
95
96
97
98
99
100
101
102
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world" : param_world_range,
                    "gbuf_local" : param_local_range,
                    "param" : sub_param_range,
103
104
                }

105
        return param_range_map
106

Lawrence McAfee's avatar
Lawrence McAfee committed
107

108
    @classmethod
109
    def build_model_gbuf_range(cls, model, dtype):
110
111
112
113

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

114
        # Grad buffer range.
115
116
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
117
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
118

119
120
        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
121
        for r in range(data_parallel_world_size):
122
123
124
125
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
126

127
128
129
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
130

131
132
133
134
        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
135
136
137

        # Altogether.
        data = {
138
139
140
141
142
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
143
144
145
146
        }

        return data

Lawrence McAfee's avatar
Lawrence McAfee committed
147

148
    @classmethod
149
    def build_model_gbuf_range_map(cls, model):
150
        return {
151
            dtype : cls.build_model_gbuf_range(model, dtype)
152
153
154
            for dtype in model._grad_buffers
        }

Lawrence McAfee's avatar
Lawrence McAfee committed
155

156
    @classmethod
157
158
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        '''Create a reverse of the model_gbuf_ranges, for referencing in
159
        opposite direction.'''
160
        param_gbuf_map = {}
161
162
163
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
164
165
166
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

Lawrence McAfee's avatar
Lawrence McAfee committed
167

168
    @classmethod
169
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
170
171
172
173
174
175
176
177
178
179

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

180
181
182
183
184
        # Optimizer group ranges.
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
185
                    group_index = param_group_map[param]
186
187
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
188

189
190
191
192
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
        group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
193

194
        return group_ranges
195

196

197
    @classmethod
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def build_model_and_main_param_groups(cls,
                                        model_gbuf_ranges,
                                        param_gbuf_map,
                                        opt_group_ranges):

        # Three groups of parameters:
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
        #   fp32_groups: original fp32 parameters
        full_float16_groups = []
        full_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

Lawrence McAfee's avatar
Lawrence McAfee committed
213
        # Allocate (or slice) each group's param shard.
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            full_float16_params_this_group = []
            full_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            full_float16_groups.append(full_float16_params_this_group)
            full_fp32_groups.append(full_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

231
232
                assert model_param.requires_grad

233
234
235
                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]
236
237

                # fp16, bf16 params.
238
239
240
241
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
Lawrence McAfee's avatar
Lawrence McAfee committed
242
243
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
244
245
246
247
248
249
250
251
252
253
254
255
256
                    shard_main_param = shard_model_param.clone().float()
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

                    # Add to group.
                    full_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
257
258

                # fp32 params.
259
                elif model_param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
260
261
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
262
263
                    full_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
264
265
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
266
267
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
268
269
270
271
272
273
274
275

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

Lawrence McAfee's avatar
Lawrence McAfee committed
276
            # Update optimizer's params.
277
278
279
280
281
282
283
284
285
286
287
288
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            full_float16_groups,
            full_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
289

Lawrence McAfee's avatar
Lawrence McAfee committed
290

291
292
    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
293
                 fp16, bf16, grad_scaler, models):
294
295
296
297

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
298
            fp16, bf16, grad_scaler, models)
299

300
301
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
302
        assert use_contiguous_buffers_in_local_ddp
303

304
305
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
306
        for model_index, model in enumerate(self.models):
307
308
309
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
310

311
312
        # Optimizer ranges.
        self.opt_group_ranges = self.build_optimizer_group_ranges(
313
            self.optimizer.param_groups,
314
            self.model_gbuf_ranges)
315
316

        # Allocate main param shards.
317
318
319
320
321
322
323
324
325
326
        (
            self.full_float16_groups,
            self.full_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

327
328
329
330
        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
331
            [ g["orig_group"] for g in self.opt_group_ranges ]
332
333
        self.optimizer.load_state_dict(self.optimizer.state_dict())

334

335
336
337
338
339
340
341
    def get_model_param_range_map(self, param):
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        return param_range_map


342
343
344
    def get_model_parallel_group(self):
        return None

345
346

    def state_dict(self):
347
348
349
350
351
352
353
354
355
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
        state_dict['shard_fp32_from_float16_groups'] = \
            self.shard_fp32_from_float16_groups
        return state_dict


356
    def load_state_dict(self, state_dict):
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
        for current_group, saved_group in zip(
                self.shard_fp32_from_float16_groups,
                state_dict["shard_fp32_from_float16_groups"]):
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)
Lawrence McAfee's avatar
Lawrence McAfee committed
384

385

386
387
388
389
390
391
392
393
394
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for groups in (
                self.full_float16_groups,
                self.full_fp32_groups,
Lawrence McAfee's avatar
Lawrence McAfee committed
395
                self.shard_float16_groups, # grad empty/unused here?
396
                self.shard_fp32_groups, # throws grad-access warning
397
398
399
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)
400

401

402
403
404
405
406
407
408
409
410
411
412
413
414
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
415
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
416
417

        return gbuf_view_items
418

Lawrence McAfee's avatar
Lawrence McAfee committed
419

420
    def reduce_model_grads(self, args, timers):
421
422
423
424
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
425

426
427
428
429
430
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

431
        # Reduce-scatter setup.
432
433
434
435
436
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

437
438
439
440
441
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

442
        # Reduce-scatter all grads.
443
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
444
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
445
            torch.distributed._reduce_scatter_base(
446
                gbuf_views[data_parallel_rank],
447
                gbuf,
448
449
                group = data_parallel_group,
            )
450

451
        timers('backward-params-all-reduce').stop()
452

Lawrence McAfee's avatar
Lawrence McAfee committed
453

454
    def gather_model_params(self, args, timers):
455
456
457
458
459
460
461
462
463
464
465

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
466
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
467
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
468
            torch.distributed._all_gather_base(
469
                gbuf,
470
471
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
472
            )
473
474
475
476
477
478
479
480
481

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
482

Lawrence McAfee's avatar
Lawrence McAfee committed
483

484
    def _collect_main_grad_data_for_unscaling(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
485
        return [
Lawrence McAfee's avatar
Lawrence McAfee committed
486
487
488
489
            param.grad.data
            for group in self.optimizer.param_groups
            for param in group["params"]
        ]
490
491


Lawrence McAfee's avatar
Lawrence McAfee committed
492
493
494
495
496
497
498
499
500
    def _get_model_and_main_params_data_float16(self):
        model_data = []
        main_data = []
        for model_group, main_group in zip(self.shard_float16_groups,
                                           self.shard_fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_data.append(model_param.data)
                main_data.append(main_param.data)
        return model_data, main_data
501
502


503
    def _copy_model_grads_to_main_grads(self):
504

Lawrence McAfee's avatar
Lawrence McAfee committed
505
506
507
508
509
510
511
512
        def copy_group_grads(full_model_groups, shard_main_groups):
            for full_model_group, shard_main_group in zip(full_model_groups,
                                                          shard_main_groups):
                for full_model_param, shard_main_param in zip(full_model_group,
                                                              shard_main_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
Lawrence McAfee's avatar
Lawrence McAfee committed
513
514
                    assert param_range.size == shard_main_param.nelement()

Lawrence McAfee's avatar
Lawrence McAfee committed
515
                    full_model_grad = full_model_param.main_grad
Lawrence McAfee's avatar
Lawrence McAfee committed
516
517
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
518
519
520
521
522
523
                    shard_main_param.grad = shard_model_grad.float()

        copy_group_grads(self.full_float16_groups,
                         self.shard_fp32_from_float16_groups)
        copy_group_grads(self.full_fp32_groups,
                         self.shard_fp32_groups)
524

525
526
527

    def _copy_main_params_to_model_params(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
528
529
530
531
532
533
534
535
536
537
538
539
540
        def copy_group_params(shard_main_groups, full_model_groups):
            for shard_main_group, full_model_group in zip(shard_main_groups,
                                                          full_model_groups):
                for shard_main_param, full_model_param in zip(shard_main_group,
                                                              full_model_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    full_model_grad = full_model_param.main_grad
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
541

542
                    shard_model_grad.data.copy_(shard_main_param)
Lawrence McAfee's avatar
Lawrence McAfee committed
543
544
545
546
547

        copy_group_params(self.shard_fp32_from_float16_groups,
                          self.full_float16_groups)
        copy_group_params(self.shard_fp32_groups,
                          self.full_fp32_groups)