distrib_optimizer.py 17.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
25
26
from megatron import get_timers
from megatron import mpu

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

# >>>
from lutil import pax, tp
DEBUG_ITERATION = 2 # 10
# <<<


class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


# class Float16DistributedOptimizer(Float16OptimizerWithFloat16Params):
# class Float16DistributedOptimizer(MegatronOptimizer):
# class Float16DistributedOptimizer(BaseFloat16Optimizer):
48
49
# class DistributedOptimizer(MegatronOptimizer):
class DistributedOptimizer(MixedPrecisionOptimizer):
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

94
        # All world shards. (i.e., across all data parallel ranks)
95
96
97
98
99
100
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
101
102

        # Local DP's shards.
103
104
105
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

106
        # Get each param's shards.
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
131
132
        '''Create a reverse of the model_gbuf_shards, for referencing in
        opposite direction.'''
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["param"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        return group_shards

    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

179
        # Allocator method.
180
        # >>>
181
182
183
184
185
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
186
187
188
189
190
191
192
        # allocate_shard = lambda shard_size, dtype : torch.zeros(
        #     (shard_size,),
        #     dtype = dtype,
        #     device = torch.cuda.current_device(),
        #     requires_grad = True)
        # <<<

193
        # Allocate each group's param/grad shard.
194
195
196
197
198
199
200
201
202
203
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # Allocate shard.
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

204
            # Update group's param.
205
206
207
208
209
210
211
212
213
214
215
216
            group_shard["orig_group"]["params"] = [ main_param ]


    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler, models):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler, models)

217
218
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
219
        args = get_args()
220
        assert args.use_contiguous_buffers_in_local_ddp
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
        self.allocate_main_param_shards(self.opt_group_shards)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # Initialize main params.
        self._copy_model_params_to_main_params()

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def get_model_parallel_group(self):
        return None

    # @staticmethod
    # def has_nan_debug(tensors):
    #     if isinstance(tensors, torch.Tensor):
    #         tensors = [ tensors ]
    #     assert isinstance(tensors, list)
    #     has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
    #     has_nan = any(has_nans)
    #     return has_nan
    # def get_local_model_param_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_param_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             model_param_shard = gbuf_shard_map["param"]
    #             model_param_views.append(
    #                 param.view(-1)[model_param_shard.start:model_param_shard.end])
    #     return model_param_views
    # def get_local_model_grad_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_grad_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf = self.models[model_index]._grad_buffers[dtype].data
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             gbuf_world_shard = gbuf_shard_map["gbuf_world"]
    #             model_grad_views.append(
    #                 gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
    #     return model_grad_views
    # def get_world_model_params(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p for m in self.models for p in m.parameters() ]
    # def get_world_model_grads(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p.main_grad for p in self.get_world_model_params() ]
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

    def load_state_dict(self):
        raise Exception("hi.")
    def reload_model_params(self):
        raise Exception("hi.")
    def state_dict(self):
        raise Exception("hi.")

    def zero_grad(self, set_to_none=True):

        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())
        # main_params = []
        # for main_group in self.optimizer.param_groups:
        #     main_params.extend(main_group["params"])

        # ** using contiguous buffer; don't set_to_none **
Lawrence McAfee's avatar
Lawrence McAfee committed
316
        _zero_grad_group_helper(model_params, set_to_none = False)
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
        # _zero_grad_group_helper(params, set_to_none = False)

    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
                gbuf_view_items.append((model_index, dtype, gbuf_views))

        return gbuf_view_items

336
337
338
339
340
    def reduce_model_grads(self, args, timers):
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
341

342
        # All-reduce embedding grads.
343
        timers('backward-embedding-all-reduce').start()
344
        self.allreduce_embedding_grads(args)
345
346
        timers('backward-embedding-all-reduce').stop()

347
        # Reduce-scatter all grads.
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

        gbuf_view_items = self.get_model_grad_buffer_dp_views()
        for model_index, dtype, gbuf_views in gbuf_view_items:
            gbuf = self.models[model_index]._grad_buffers[dtype].data
            gbuf /= data_parallel_world_size
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
        timers('backward-params-all-reduce').stop()
            

365
    def gather_model_params(self, args, timers, ITERATION):
366
367
368
369
370
371
372

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
Lawrence McAfee's avatar
Lawrence McAfee committed
373
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()


    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


    def _copy_model_grads_to_main_grads(self, ITERATION):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)


    def _copy_main_params_to_model_params(self, ITERATION):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)