distrib_optimizer.py 29.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29
# from .optimizer import Float16OptimizerWithFloat16Params
30

31
32
33
# >>>
from lutil import pax, tp, print_seq
# <<<
34

35
36
37
38
39
# >>>
# class Shard:
class Range:
# <<<

40
41
42
43
44
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
45
        return Range(start, start + self.size)
46
47
48
49
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


50
# class DistributedOptimizer(Float16OptimizerWithFloat16Params):
51
class DistributedOptimizer(MixedPrecisionOptimizer):
52
53

    @classmethod
54
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
55

56
        # Param range map.
57
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
58
        param_range_map = {}
59
60
        for param, param_world_indexes in param_world_index_map.items():

61
            # Param range.
62
63
64
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
65
                param_world_start - gbuf_world_range.start)
66
            param_local_end = min(
67
68
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)
69

70
            # Add param, if within local gbuf range.
71
            if param_local_end > param_local_start:
72
73
74
75
76
77
78
79
80
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world" : param_world_range,
                    "gbuf_local" : param_local_range,
                    "param" : sub_param_range,
81
82
                }

83
        return param_range_map
84
85

    @classmethod
86
    def build_model_gbuf_range(cls, model, dtype):
87
88
89
90

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

91
        # Grad buffer range.
92
93
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
94
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
95

96
97
        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
98
        for r in range(data_parallel_world_size):
99
100
101
102
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
103

104
105
106
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
107

108
109
110
111
        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
112
113
114

        # Altogether.
        data = {
115
116
117
118
119
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
120
121
122
123
124
        }

        return data

    @classmethod
125
    def build_model_gbuf_range_map(cls, model):
126
        return {
127
            dtype : cls.build_model_gbuf_range(model, dtype)
128
129
130
131
            for dtype in model._grad_buffers
        }

    @classmethod
132
133
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        '''Create a reverse of the model_gbuf_ranges, for referencing in
134
        opposite direction.'''
135
        param_gbuf_map = {}
136
137
138
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
139
140
141
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

142
143
    # >>>
    # @classmethod
144
    # def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
145
146
147
148
149
150
151
152
153
154

    #     num_groups = len(param_groups)

    #     # Param group map.
    #     param_group_map = {}
    #     for group_index, group in enumerate(param_groups):
    #         for param in group["params"]:
    #             assert param.requires_grad
    #             param_group_map[param] = group_index

155
156
157
158
159
    #     # Optimizer group ranges.
    #     group_ranges = [ {"size": 0, "param_map": {}} for _ in param_groups ]
    #     for model_gbuf_range_map in model_gbuf_ranges:
    #         for dtype, gbuf_range_map in model_gbuf_range_map.items():
    #             for param in gbuf_range_map["param_map"]:
160
161
                    
    #                 group_index = param_group_map[param]
162
163
    #                 group_range = group_ranges[group_index]
    #                 param_size = gbuf_range_map["param_map"][param]["param"].size
164

165
    #                 param_group_start = group_range["size"]
166
    #                 param_group_end = param_group_start + param_size
167
    #                 param_group_range = Range(param_group_start, param_group_end)
168

169
170
    #                 group_range["size"] += param_size
    #                 group_range["param_map"][param] = param_group_range
171

172
173
174
175
    #     # Squeeze zero-size group ranges.
    #     for group_index, group_range in enumerate(group_ranges):
    #         group_range["orig_group"] = param_groups[group_index]
    #     group_ranges = [ g for g in group_ranges if g["size"] > 0 ]
176

177
    #     return group_ranges
178
    @classmethod
179
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
180
181
182
183
184
185
186
187
188
189

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

190
        # Optimizer group ranges.
191
        # >>>
192
193
194
        # group_ranges = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        group_ranges = [ {"params": []} for _ in param_groups ]
        # group_ranges = [ [] for _ in param_groups ]
195
        # <<<
196
197
198
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
199
                    group_index = param_group_map[param]
200
201
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
202

203
204
205
206
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
        group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
207

208
        # >>>
209
210
        # print_seq("group ranges / len = %s." %
        #           ", ".join(str(len(s["params"])) for s in group_ranges))
211
        # <<<
212

213
        return group_ranges
214
    # <<<
215

216
217
    # >>>
    # @classmethod
218
    # def allocate_main_param_shards(cls, opt_group_ranges):
219

220
221
222
223
224
225
    #     # Allocator method.
    #     allocate_shard = lambda shard_size, dtype : torch.empty(
    #         (shard_size,),
    #         dtype = dtype,
    #         device = torch.cuda.current_device(),
    #         requires_grad = True)
226

227
    #     # Allocate each group's param/grad shard.
228
    #     for group_index, group_range in enumerate(opt_group_ranges):
229

230
    #         group_size = group_range["size"]
231
    #         assert group_size != 0, "temporary check ... remove me."
232

233
234
235
236
    #         # Allocate shard.
    #         main_param = allocate_shard(group_size, torch.float)
    #         main_param.grad = allocate_shard(group_size, torch.float)
    #         mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)
237

238
    #         # Update group's param.
239
    #         group_range["orig_group"]["params"] = [ main_param ]
240
    @classmethod
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    # def allocate_main_params(cls, opt_group_ranges):
    # def allocate_or_view_main_param_shards(cls,
    def build_model_and_main_param_groups(cls,
                                        model_gbuf_ranges,
                                        param_gbuf_map,
                                        opt_group_ranges):

        # Three groups of parameters:
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
        #   fp32_groups: original fp32 parameters
        full_float16_groups = []
        full_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

        # Allocate each group's param shard.
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            full_float16_params_this_group = []
            full_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            full_float16_groups.append(full_float16_params_this_group)
            full_fp32_groups.append(full_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]
279
280

                # fp16, bf16 params.
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
                    shard_model_param = \
                        model_param.detach()[param_range.start:param_range.end]
                    shard_main_param = shard_model_param.clone().float()
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

                    # Add to group.
                    full_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
300
301
302

                # fp32 params.
                elif param.type() == 'torch.cuda.FloatTensor':
303
304
305
306
                    shard_model_param = \
                        model_param[param_range.start:param_range.end]
                    full_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
307
308
309
310
311
312
313
314

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
                # # Add to group.
                # group_main_params.append(main_param)

            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            full_float16_groups,
            full_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
330
331
332
333
    # <<<

    # >>>
    # @classmethod
334
    # def build_main_grad_views_for_grad_norm(cls, opt_group_ranges, optimizer):
335
336

    #     grad_views = []
337
    #     for group_index, opt_group_range in enumerate(opt_group_ranges):
338
    #         opt_grad = optimizer.param_groups[group_index]["params"][0].grad
339
    #         for param, range in opt_group_range["param_map"].items():
340
341
    #             if param_is_not_shared(param) and \
    #                param_is_not_tensor_parallel_duplicate(param):
342
                    
343
    #                 grad_view = opt_grad[range.start:range.end]
344
    #                 grad_views.append(grad_view)
345

346
347
    #     return grad_views
    # <<<
348
349
350

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
351
                 fp16, bf16, grad_scaler, models):
352
353
354
355

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
356
            fp16, bf16, grad_scaler, models)
357

358
359
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
360
361
362
363
364
        # >>>
        # args = get_args()
        # assert args.use_contiguous_buffers_in_local_ddp
        assert use_contiguous_buffers_in_local_ddp
        # <<<
365

366
367
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
368
        for model_index, model in enumerate(self.models):
369
370
371
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
372

373
374
        # Optimizer ranges.
        self.opt_group_ranges = self.build_optimizer_group_ranges(
375
            self.optimizer.param_groups,
376
            self.model_gbuf_ranges)
377
378

        # Allocate main param shards.
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
        (
            self.full_float16_groups,
            self.full_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

        # print_seq("16 [%d], 16x32 [%d], 32 [%d]." % (
        #     sum(len(g) for g in self.float16_groups),
        #     sum(len(g) for g in self.fp32_from_float16_groups),
        #     sum(len(g) for g in self.fp32_groups),
        # ))
394
395
396
397
398

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
399
            [ g["orig_group"] for g in self.opt_group_ranges ]
400
401
        self.optimizer.load_state_dict(self.optimizer.state_dict())

402
403
404
405
        # >>>
        # # Initialize main params.
        # self._copy_model_params_to_main_params()
        # <<<
406

407
408
        # >>>
        # # Params for grad norm.
409
410
        # self.main_grad_views_for_grad_norm = self.build_main_grad_views_for_grad_norm(
        #     self.opt_group_ranges,
411
412
        #     self.optimizer)
        # <<<
413
414


415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
    def get_model_param_range_map(self, param):
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        
        # >>>
        # pax(0, {
        #     "param" : param,
        #     "model_index" : model_index,
        #     "dtype" : str(dtype),
        #     "gbuf_range_map" : gbuf_range_map,
        #     "param_range_map" : param_range_map,
        # })
        # <<<

        return param_range_map


433
434
435
    def get_model_parallel_group(self):
        return None

436

437
438
439
440
441
442
443
444
    # def get_main_params(self):
    #     return [ g["params"][0] for g in self.optimizer.param_groups ]
    # def get_main_grads(self):
    #     return [ p.grad for p in self.get_main_params() ]
    # def get_main_param(self, group_index):
    #     return self.get_main_params()[group_index]
    # def get_main_grad(self, group_index):
    #     return self.get_main_param(group_index).grad
445

446

447
448
449
    # >>>
    # def get_main_grads_for_grad_norm(self):
    #     return self.main_grad_views_for_grad_norm
450
451
    def get_main_grads_for_grad_norm(self):
        raise Exception("does 'super' work?")
452
    # <<<
453

454

455
456
457
458
459
460
461
    # def state_dict(self):
    #     state_dict = {}
    #     state_dict['optimizer'] = self.optimizer.state_dict()
    #     if self.grad_scaler:
    #         state_dict['grad_scaler'] = self.grad_scaler.state_dict()
    #     state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
    #     return state_dict
462
    def state_dict(self):
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
        raise Exception("fix me.")


    # def load_state_dict(self, state_dict):
    #     # Optimizer.
    #     optimizer_key = 'optimizer'
    #     if optimizer_key not in state_dict:
    #         optimizer_key = 'optimizer_state_dict'
    #         print_rank_0('***WARNING*** loading optimizer from '
    #                      'an old checkpoint ...')
    #     self.optimizer.load_state_dict(state_dict[optimizer_key])

    #     # Grad scaler.
    #     if 'grad_scaler' not in state_dict:
    #         print_rank_0('***WARNING*** found an old checkpoint, will not '
    #                      'load grad scaler ...')
    #     else:
    #         if self.grad_scaler:
    #             self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
    #         else:
    #             print_rank_0('***WARNING*** fould the grad scaler in the '
    #                          'checkpoint but it is None in the class. '
    #                          'Skipping loading grad scaler ...')

    #     # Copy data for the main params.
    #     current_groups = [ g["params"] for g in self.optimizer.param_groups ]
    #     assert "groups" in state_dict, "key 'groups' not in state_dict."
    #     for current_group, saved_group in zip(current_groups, state_dict["groups"]):
    #         for current_param, saved_param in zip(current_group, saved_group):
    #             current_param.data.copy_(saved_param.data)
493
    def load_state_dict(self, state_dict):
494
        raise Exception("hi.")
495

496
    # def zero_grad(self, set_to_none=True):
497

498
499
500
501
502
    #     # Collect model params.
    #     model_params = []
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             model_params.extend(param_map.keys())
503

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    #     # Distributed optimizer requires contiguous buffer; don't set to None.
    #     _zero_grad_group_helper(model_params, set_to_none = False)
    # def zero_grad(self, set_to_none=True):
    #     raise Exception("does 'super' work?")
    # >>>
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for groups in (
                self.full_float16_groups,
                self.full_fp32_groups,
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)
    # <<<
522

523

524
525
526
527
528
529
530
531
532
533
534
535
536
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
537
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
538
539

        return gbuf_view_items
540

541
    def reduce_model_grads(self, args, timers):
542
543
544
545
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
546

547
548
549
550
551
552
553
554
        # >>>
        # print_seq([
        #     tp(b.data)
        #     for m in self.models
        #     for b in m._grad_buffers.values()
        # ])
        # <<<

555
556
557
558
559
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

560
        # Reduce-scatter setup.
561
562
563
564
565
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

566
567
568
569
570
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

571
        # Reduce-scatter all grads.
572
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
573
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
574
            torch.distributed._reduce_scatter_base(
575
                gbuf_views[data_parallel_rank],
576
                gbuf,
577
578
                group = data_parallel_group,
            )
579

580
        timers('backward-params-all-reduce').stop()
581

582
    def gather_model_params(self, args, timers):
583

584
585
        raise Exception("hi.")

586
587
588
589
590
591
592
593
594
595
        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
596
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
597
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
598
            torch.distributed._all_gather_base(
599
                gbuf,
600
601
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
602
            )
603
604
605
606
607
608
609
610
611

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
612
613

    def _collect_main_grad_data_for_unscaling(self):
614
        raise Exception("hi.")
615
616
        return [ g.data for g in self.get_main_grads() ]

617
618
    # >>>
    # def _copy_model_params_to_main_params(self):
619

620
621
622
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         main_param = self.get_main_param(group_index)
    #         for model_param, main_range in group_range["param_map"].items():
623

624
625
626
627
628
    #             # Model range.
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["param"]
    #             model_range = self.get_model_param_range_map(model_param)["param"]
629

630
    #             assert main_range.size == model_range.size
631

632
633
634
    #             # Copy shard data.
    #             main_view = main_param[main_range.start:main_range.end]
    #             model_view = model_param.view(-1)[model_range.start:model_range.end]
635

636
637
638
639
    #             main_view.detach().copy_(model_view)
    def _copy_model_params_to_main_params(self):
        raise Exception("check if super's copy works.")
    # <<<
640

641
642
    # >>>
    # def _copy_model_grads_to_main_grads(self):
643

644
645
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         for model_param, main_range in group_range["param_map"].items():
646

647
648
649
650
651
    #             # Model range.
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["gbuf_world"]
    #             model_range = self.get_model_param_range_map(model_param)["gbuf_world"]
652

653
    #             assert main_range.size == model_range.size
654

655
656
657
    #             # Copy from DDP's contiguous buffer to main shard's grad.
    #             model_grad = self.models[model_index]._grad_buffers[dtype].data
    #             main_grad = self.get_main_grad(group_index)
658

659
660
661
    #             # Copy sub-range within tensor.
    #             model_view = model_grad[model_range.start:model_range.end]
    #             main_view = main_grad[main_range.start:main_range.end]
662

663
664
665
666
    #             main_view.detach().copy_(model_view)
    # def _copy_model_grads_to_main_grads(self):
    #     super()._copy_model_grads_to_main_grads()
    #     raise Exception("check main param '.grad'.")
667

668
669
670
671
    #     for group in self.optimizer.param_groups:
    #         for param in group["params"]:
    #             param.grad = 
    def _copy_model_grads_to_main_grads(self):
672

673
674
675
676
677
678
679
        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<
680

681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        # This only needs to be done for the float16 group.
        for full_model_group, shard_main_group in zip(
                self.full_float16_groups,
                self.shard_fp32_from_float16_groups):
            for full_model_param, shard_main_param in zip(full_model_group,
                                                          shard_main_group):

                param_range_map = self.get_model_param_range_map(full_model_param)
                param_range = param_range_map["param"]
                full_model_grad = full_model_param.main_grad
                shard_model_grad = \
                    full_model_grad[param_range.start:param_range.end]
                shard_main_param.grad = shard_model_grad.float()

                # >>>
                if full_model_param.nelement() != shard_main_param.nelement():
                    pax(0, {
                        "param_range_map" : param_range_map,
                        "param_range" : param_range,
                        "full_model_param" : tp(full_model_param),
                        "full_model_grad" : tp(full_model_grad),
                        "shard_model_grad" : tp(shard_model_grad),
                        "shard_main_grad" : tp(shard_main_param.grad),
                        "shard_main_param" : tp(shard_main_param),
                    })
                # <<<

        # For fp32 grads, we need to reset the grads to main grad.
        for group in self.fp32_groups:
            for param in group:
                param.grad = param.main_grad
712

713
714
715
716
717
718
719
        # >>>
        print_seq([
            "grad = %s." % tp(p.grad)
            for g in self.optimizer.param_groups
            for p in g["params"]
        ])
        # <<<
720

721
722
723
724
    # <<<

    # >>>
    # def _copy_main_params_to_model_params(self):
725

726
727
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         for model_param, main_range in group_range["param_map"].items():
728

729
730
731
732
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["gbuf_world"]
    #             model_range = self.get_model_param_range_map(model_param)["gbuf_world"]
733

734
    #             assert main_range.size == model_range.size
735

736
737
738
    #             # Use DDP's contiguous buffer to temporarily hold params.
    #             model_param = self.models[model_index]._grad_buffers[dtype].data
    #             main_param = self.get_main_param(group_index)
739

740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
    #             # Copy sub-range within tensor.
    #             model_view = model_param[model_range.start:model_range.end]
    #             main_view = main_param[main_range.start:main_range.end]

    #             model_view.detach().copy_(main_view)
    # def _copy_main_params_to_model_params(self):
    #     super()._copy_main_params_to_model_params()
    #     raise Exception("check main param '.grad'.")
    def _copy_main_params_to_model_params(self):
        raise Exception("hi.")

        # This only needs to be done for the float16 group.
        for model_group, main_group in zip(self.float16_groups,
                                           self.fp32_from_float16_groups):
            for model_param, main_param in zip(model_group, main_group):
                model_param.main_grad.detach().copy_(main_param)

        # For fp32 grads, we need to reset the grads to main grad.
        for group in self.fp32_groups:
            for param in group:
                param.main_grad.detach().copy_(param)
    # <<<