distrib_optimizer.py 31.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29
# from .optimizer import Float16OptimizerWithFloat16Params
30

31
32
33
# >>>
from lutil import pax, tp, print_seq
# <<<
34

35
36
37
38
39
# >>>
# class Shard:
class Range:
# <<<

40
41
42
43
44
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
45
        return Range(start, start + self.size)
46
47
48
49
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


50
# class DistributedOptimizer(Float16OptimizerWithFloat16Params):
51
class DistributedOptimizer(MixedPrecisionOptimizer):
52
53

    @classmethod
54
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
55

56
        # Param range map.
57
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
58
        param_range_map = {}
59
60
        for param, param_world_indexes in param_world_index_map.items():

61
            # Param range.
62
63
64
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
65
                param_world_start - gbuf_world_range.start)
66
            param_local_end = min(
67
68
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)
69

70
            # Add param, if within local gbuf range.
71
            if param_local_end > param_local_start:
72
73
74
75
76
77
78
79
80
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world" : param_world_range,
                    "gbuf_local" : param_local_range,
                    "param" : sub_param_range,
81
82
                }

83
        return param_range_map
84
85

    @classmethod
86
    def build_model_gbuf_range(cls, model, dtype):
87
88
89
90

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

91
        # Grad buffer range.
92
93
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
94
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
95

96
97
        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
98
        for r in range(data_parallel_world_size):
99
100
101
102
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
103

104
105
106
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
107

108
109
110
111
        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
112
113
114

        # Altogether.
        data = {
115
116
117
118
119
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
120
121
122
123
124
        }

        return data

    @classmethod
125
    def build_model_gbuf_range_map(cls, model):
126
        return {
127
            dtype : cls.build_model_gbuf_range(model, dtype)
128
129
130
131
            for dtype in model._grad_buffers
        }

    @classmethod
132
133
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        '''Create a reverse of the model_gbuf_ranges, for referencing in
134
        opposite direction.'''
135
        param_gbuf_map = {}
136
137
138
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
139
140
141
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

142
143
    # >>>
    # @classmethod
144
    # def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
145
146
147
148
149
150
151
152
153
154

    #     num_groups = len(param_groups)

    #     # Param group map.
    #     param_group_map = {}
    #     for group_index, group in enumerate(param_groups):
    #         for param in group["params"]:
    #             assert param.requires_grad
    #             param_group_map[param] = group_index

155
156
157
158
159
    #     # Optimizer group ranges.
    #     group_ranges = [ {"size": 0, "param_map": {}} for _ in param_groups ]
    #     for model_gbuf_range_map in model_gbuf_ranges:
    #         for dtype, gbuf_range_map in model_gbuf_range_map.items():
    #             for param in gbuf_range_map["param_map"]:
160
161
                    
    #                 group_index = param_group_map[param]
162
163
    #                 group_range = group_ranges[group_index]
    #                 param_size = gbuf_range_map["param_map"][param]["param"].size
164

165
    #                 param_group_start = group_range["size"]
166
    #                 param_group_end = param_group_start + param_size
167
    #                 param_group_range = Range(param_group_start, param_group_end)
168

169
170
    #                 group_range["size"] += param_size
    #                 group_range["param_map"][param] = param_group_range
171

172
173
174
175
    #     # Squeeze zero-size group ranges.
    #     for group_index, group_range in enumerate(group_ranges):
    #         group_range["orig_group"] = param_groups[group_index]
    #     group_ranges = [ g for g in group_ranges if g["size"] > 0 ]
176

177
    #     return group_ranges
178
    @classmethod
179
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
180
181
182
183
184
185
186
187
188
189

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

190
        # Optimizer group ranges.
191
        # >>>
192
193
194
        # group_ranges = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        group_ranges = [ {"params": []} for _ in param_groups ]
        # group_ranges = [ [] for _ in param_groups ]
195
        # <<<
196
197
198
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
199
                    group_index = param_group_map[param]
200
201
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
202

203
204
205
206
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
        group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
207

208
        # >>>
209
210
        # print_seq("group ranges / len = %s." %
        #           ", ".join(str(len(s["params"])) for s in group_ranges))
211
        # <<<
212

213
        return group_ranges
214
    # <<<
215

216
217
    # >>>
    # @classmethod
218
    # def allocate_main_param_shards(cls, opt_group_ranges):
219

220
221
222
223
224
225
    #     # Allocator method.
    #     allocate_shard = lambda shard_size, dtype : torch.empty(
    #         (shard_size,),
    #         dtype = dtype,
    #         device = torch.cuda.current_device(),
    #         requires_grad = True)
226

227
    #     # Allocate each group's param/grad shard.
228
    #     for group_index, group_range in enumerate(opt_group_ranges):
229

230
    #         group_size = group_range["size"]
231
    #         assert group_size != 0, "temporary check ... remove me."
232

233
234
235
236
    #         # Allocate shard.
    #         main_param = allocate_shard(group_size, torch.float)
    #         main_param.grad = allocate_shard(group_size, torch.float)
    #         mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)
237

238
    #         # Update group's param.
239
    #         group_range["orig_group"]["params"] = [ main_param ]
240
    @classmethod
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    # def allocate_main_params(cls, opt_group_ranges):
    # def allocate_or_view_main_param_shards(cls,
    def build_model_and_main_param_groups(cls,
                                        model_gbuf_ranges,
                                        param_gbuf_map,
                                        opt_group_ranges):

        # Three groups of parameters:
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
        #   fp32_groups: original fp32 parameters
        full_float16_groups = []
        full_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

        # Allocate each group's param shard.
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            full_float16_params_this_group = []
            full_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            full_float16_groups.append(full_float16_params_this_group)
            full_fp32_groups.append(full_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]
279

Lawrence McAfee's avatar
Lawrence McAfee committed
280
281
282
283
                # >>>
                assert param_range.size > 0
                # <<<

284
                # fp16, bf16 params.
285
286
287
288
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
Lawrence McAfee's avatar
Lawrence McAfee committed
289
290
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
291
292
293
294
295
296
297
298
299
                    shard_main_param = shard_model_param.clone().float()
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

Lawrence McAfee's avatar
Lawrence McAfee committed
300
301
302
303
304
                    # >>>
                    assert shard_main_param.nelement() > 0, \
                        "param_range = %s." % param_range
                    # <<<

305
306
307
308
                    # Add to group.
                    full_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
309
310
311

                # fp32 params.
                elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
312
313
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
314
315
                    full_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
316
317
318
319
320
321
322
323

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
                # # Add to group.
                # group_main_params.append(main_param)

            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            full_float16_groups,
            full_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
339
340
341
342
    # <<<

    # >>>
    # @classmethod
343
    # def build_main_grad_views_for_grad_norm(cls, opt_group_ranges, optimizer):
344
345

    #     grad_views = []
346
    #     for group_index, opt_group_range in enumerate(opt_group_ranges):
347
    #         opt_grad = optimizer.param_groups[group_index]["params"][0].grad
348
    #         for param, range in opt_group_range["param_map"].items():
349
350
    #             if param_is_not_shared(param) and \
    #                param_is_not_tensor_parallel_duplicate(param):
351
                    
352
    #                 grad_view = opt_grad[range.start:range.end]
353
    #                 grad_views.append(grad_view)
354

355
356
    #     return grad_views
    # <<<
357
358
359

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
360
                 fp16, bf16, grad_scaler, models):
361
362
363
364

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
365
            fp16, bf16, grad_scaler, models)
366

367
368
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
369
370
371
372
373
        # >>>
        # args = get_args()
        # assert args.use_contiguous_buffers_in_local_ddp
        assert use_contiguous_buffers_in_local_ddp
        # <<<
374

375
376
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
377
        for model_index, model in enumerate(self.models):
378
379
380
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
381

382
383
        # Optimizer ranges.
        self.opt_group_ranges = self.build_optimizer_group_ranges(
384
            self.optimizer.param_groups,
385
            self.model_gbuf_ranges)
386
387

        # Allocate main param shards.
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        (
            self.full_float16_groups,
            self.full_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

        # print_seq("16 [%d], 16x32 [%d], 32 [%d]." % (
        #     sum(len(g) for g in self.float16_groups),
        #     sum(len(g) for g in self.fp32_from_float16_groups),
        #     sum(len(g) for g in self.fp32_groups),
        # ))
403
404
405
406
407

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
408
            [ g["orig_group"] for g in self.opt_group_ranges ]
409
410
        self.optimizer.load_state_dict(self.optimizer.state_dict())

411
412
413
414
        # >>>
        # # Initialize main params.
        # self._copy_model_params_to_main_params()
        # <<<
415

416
417
        # >>>
        # # Params for grad norm.
418
419
        # self.main_grad_views_for_grad_norm = self.build_main_grad_views_for_grad_norm(
        #     self.opt_group_ranges,
420
421
        #     self.optimizer)
        # <<<
422
423


424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    def get_model_param_range_map(self, param):
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        
        # >>>
        # pax(0, {
        #     "param" : param,
        #     "model_index" : model_index,
        #     "dtype" : str(dtype),
        #     "gbuf_range_map" : gbuf_range_map,
        #     "param_range_map" : param_range_map,
        # })
        # <<<

        return param_range_map


442
443
444
    def get_model_parallel_group(self):
        return None

445

446
447
448
449
450
451
452
453
    # def get_main_params(self):
    #     return [ g["params"][0] for g in self.optimizer.param_groups ]
    # def get_main_grads(self):
    #     return [ p.grad for p in self.get_main_params() ]
    # def get_main_param(self, group_index):
    #     return self.get_main_params()[group_index]
    # def get_main_grad(self, group_index):
    #     return self.get_main_param(group_index).grad
454

455

456
457
458
    # >>>
    # def get_main_grads_for_grad_norm(self):
    #     return self.main_grad_views_for_grad_norm
Lawrence McAfee's avatar
Lawrence McAfee committed
459
460
461
462
463
464
    # def get_main_grads_for_grad_norm(self):
    #     raise Exception("....... use 'super' .......")
    #     grads_for_norm = super().get_main_grads_for_grad_norm()
    #     if torch.distributed.get_rank() == 1:
    #         print_seq([ tp(g) for g in grads_for_norm ])
    #     return grads_for_norm
465
    # <<<
466

467

468
469
470
471
472
473
474
    # def state_dict(self):
    #     state_dict = {}
    #     state_dict['optimizer'] = self.optimizer.state_dict()
    #     if self.grad_scaler:
    #         state_dict['grad_scaler'] = self.grad_scaler.state_dict()
    #     state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
    #     return state_dict
475
    def state_dict(self):
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
        raise Exception("fix me.")


    # def load_state_dict(self, state_dict):
    #     # Optimizer.
    #     optimizer_key = 'optimizer'
    #     if optimizer_key not in state_dict:
    #         optimizer_key = 'optimizer_state_dict'
    #         print_rank_0('***WARNING*** loading optimizer from '
    #                      'an old checkpoint ...')
    #     self.optimizer.load_state_dict(state_dict[optimizer_key])

    #     # Grad scaler.
    #     if 'grad_scaler' not in state_dict:
    #         print_rank_0('***WARNING*** found an old checkpoint, will not '
    #                      'load grad scaler ...')
    #     else:
    #         if self.grad_scaler:
    #             self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
    #         else:
    #             print_rank_0('***WARNING*** fould the grad scaler in the '
    #                          'checkpoint but it is None in the class. '
    #                          'Skipping loading grad scaler ...')

    #     # Copy data for the main params.
    #     current_groups = [ g["params"] for g in self.optimizer.param_groups ]
    #     assert "groups" in state_dict, "key 'groups' not in state_dict."
    #     for current_group, saved_group in zip(current_groups, state_dict["groups"]):
    #         for current_param, saved_param in zip(current_group, saved_group):
    #             current_param.data.copy_(saved_param.data)
506
    def load_state_dict(self, state_dict):
507
        raise Exception("hi.")
508

Lawrence McAfee's avatar
Lawrence McAfee committed
509
    # >>>
510
    # def zero_grad(self, set_to_none=True):
511

512
513
514
515
516
    #     # Collect model params.
    #     model_params = []
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             model_params.extend(param_map.keys())
517

518
519
520
521
522
523
524
525
526
527
528
529
530
    #     # Distributed optimizer requires contiguous buffer; don't set to None.
    #     _zero_grad_group_helper(model_params, set_to_none = False)
    # def zero_grad(self, set_to_none=True):
    #     raise Exception("does 'super' work?")
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for groups in (
                self.full_float16_groups,
                self.full_fp32_groups,
Lawrence McAfee's avatar
Lawrence McAfee committed
531
532
                self.shard_float16_groups, # grad empty/unused here?
                self.shard_fp32_groups,
533
534
535
536
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)
    # <<<
537

538

539
540
541
542
543
544
545
546
547
548
549
550
551
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
552
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
553
554

        return gbuf_view_items
555

556
    def reduce_model_grads(self, args, timers):
557
558
559
560
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
561

562
563
564
565
566
567
        # >>>
        # print_seq([
        #     tp(b.data)
        #     for m in self.models
        #     for b in m._grad_buffers.values()
        # ])
Lawrence McAfee's avatar
Lawrence McAfee committed
568
        # print_seq("hi.")
569
570
        # <<<

571
572
573
574
575
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

576
        # Reduce-scatter setup.
577
578
579
580
581
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

582
583
584
585
586
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

587
        # Reduce-scatter all grads.
588
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
589
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
590
            torch.distributed._reduce_scatter_base(
591
                gbuf_views[data_parallel_rank],
592
                gbuf,
593
594
                group = data_parallel_group,
            )
595

Lawrence McAfee's avatar
Lawrence McAfee committed
596
597
598
599
        # >>>
        # print_seq("hi.")
        # <<<

600
        timers('backward-params-all-reduce').stop()
601

602
    def gather_model_params(self, args, timers):
603

604
605
        raise Exception("hi.")

606
607
608
609
610
611
612
613
614
615
        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
616
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
617
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
618
            torch.distributed._all_gather_base(
619
                gbuf,
620
621
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
622
            )
623
624
625
626
627
628
629
630
631

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
632

Lawrence McAfee's avatar
Lawrence McAfee committed
633
634
635
636

    # >>>
    # def _collect_main_grad_data_for_unscaling(self):
    #     return [ g.data for g in self.get_main_grads() ]
637
    def _collect_main_grad_data_for_unscaling(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
638
639
640
641
642
643
644
645
646
        main_grad_data = [
            param.grad.data
            for group in self.optimizer.param_groups
            for param in group["params"]
        ]
        # print_seq([ tp(g) for g in main_grad_data ])
        return main_grad_data
    # <<<

647

648
649
    # >>>
    # def _copy_model_params_to_main_params(self):
650

651
652
653
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         main_param = self.get_main_param(group_index)
    #         for model_param, main_range in group_range["param_map"].items():
654

655
656
657
658
659
    #             # Model range.
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["param"]
    #             model_range = self.get_model_param_range_map(model_param)["param"]
660

661
    #             assert main_range.size == model_range.size
662

663
664
665
    #             # Copy shard data.
    #             main_view = main_param[main_range.start:main_range.end]
    #             model_view = model_param.view(-1)[model_range.start:model_range.end]
666

667
668
669
670
    #             main_view.detach().copy_(model_view)
    def _copy_model_params_to_main_params(self):
        raise Exception("check if super's copy works.")
    # <<<
671

672
673
    # >>>
    def _copy_model_grads_to_main_grads(self):
674

675
676
677
678
679
680
681
        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<
682

Lawrence McAfee's avatar
Lawrence McAfee committed
683
684
685
686
687
688
689
690
        def copy_group_grads(full_model_groups, shard_main_groups):
            for full_model_group, shard_main_group in zip(full_model_groups,
                                                          shard_main_groups):
                for full_model_param, shard_main_param in zip(full_model_group,
                                                              shard_main_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
Lawrence McAfee's avatar
Lawrence McAfee committed
691
692
                    assert param_range.size == shard_main_param.nelement()

Lawrence McAfee's avatar
Lawrence McAfee committed
693
                    full_model_grad = full_model_param.main_grad
Lawrence McAfee's avatar
Lawrence McAfee committed
694
695
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
696
697
                    shard_main_param.grad = shard_model_grad.float()

Lawrence McAfee's avatar
Lawrence McAfee committed
698
699
700
701
702
703
        # print_seq([ "%s / %d, [%d] %s" % (
        #     k, i, len(g), ", ".join(str(p.nelement()) for p in g),
        # ) for k, gs in [
        #     ("model", self.full_float16_groups),
        #     ("main", self.shard_fp32_from_float16_groups),
        # ] for i, g in enumerate(gs)])
Lawrence McAfee's avatar
Lawrence McAfee committed
704
705
706
707
708

        copy_group_grads(self.full_float16_groups,
                         self.shard_fp32_from_float16_groups)
        copy_group_grads(self.full_fp32_groups,
                         self.shard_fp32_groups)
709

710
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
711
712
713
714
715
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
716
717
718
719
720
        # <<<
    # <<<

    # >>>
    # def _copy_main_params_to_model_params(self):
721

722
723
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         for model_param, main_range in group_range["param_map"].items():
724

725
726
727
728
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["gbuf_world"]
    #             model_range = self.get_model_param_range_map(model_param)["gbuf_world"]
729

730
    #             assert main_range.size == model_range.size
731

732
733
734
    #             # Use DDP's contiguous buffer to temporarily hold params.
    #             model_param = self.models[model_index]._grad_buffers[dtype].data
    #             main_param = self.get_main_param(group_index)
735

736
737
738
739
740
741
742
743
    #             # Copy sub-range within tensor.
    #             model_view = model_param[model_range.start:model_range.end]
    #             main_view = main_param[main_range.start:main_range.end]

    #             model_view.detach().copy_(main_view)
    # def _copy_main_params_to_model_params(self):
    #     super()._copy_main_params_to_model_params()
    #     raise Exception("check main param '.grad'.")
Lawrence McAfee's avatar
Lawrence McAfee committed
744
745
746
747
748
749
750
751
752
753
754
755
756
    # def _copy_main_params_to_model_params(self):
    #     raise Exception("hi.")

    #     # This only needs to be done for the float16 group.
    #     for model_group, main_group in zip(self.float16_groups,
    #                                        self.fp32_from_float16_groups):
    #         for model_param, main_param in zip(model_group, main_group):
    #             model_param.main_grad.detach().copy_(main_param)

    #     # For fp32 grads, we need to reset the grads to main grad.
    #     for group in self.fp32_groups:
    #         for param in group:
    #             param.main_grad.detach().copy_(param)
757
758
    def _copy_main_params_to_model_params(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<

        def copy_group_params(shard_main_groups, full_model_groups):
            for shard_main_group, full_model_group in zip(shard_main_groups,
                                                          full_model_groups):
                for shard_main_param, full_model_param in zip(shard_main_group,
                                                              full_model_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    full_model_grad = full_model_param.main_grad
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
                    shard_main_param.grad = shard_model_grad.float()
781

Lawrence McAfee's avatar
Lawrence McAfee committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
        # print_seq([ "%s / %d, [%d] %s" % (
        #     k, i, len(g), ", ".join(str(p.nelement()) for p in g),
        # ) for k, gs in [
        #     ("model", self.full_float16_groups),
        #     ("main", self.shard_fp32_from_float16_groups),
        # ] for i, g in enumerate(gs)])

        copy_group_params(self.shard_fp32_from_float16_groups,
                          self.full_float16_groups)
        copy_group_params(self.shard_fp32_groups,
                          self.full_fp32_groups)

        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<
801
    # <<<