distrib_optimizer.py 18 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29
30
31
32
33
34
35
36
37
38
39
40
41


class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


42
class DistributedOptimizer(MixedPrecisionOptimizer):
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

87
        # All world shards. (i.e., across all data parallel ranks)
88
89
90
91
92
93
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
94
95

        # Local DP's shards.
96
97
98
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

99
        # Get each param's shards.
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
124
125
        '''Create a reverse of the model_gbuf_shards, for referencing in
        opposite direction.'''
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["param"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        return group_shards

    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

172
        # Allocator method.
173
174
175
176
177
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
178

179
        # Allocate each group's param/grad shard.
180
181
182
183
184
185
186
187
188
189
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # Allocate shard.
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

190
            # Update group's param.
191
192
            group_shard["orig_group"]["params"] = [ main_param ]

193
    @classmethod
194
    def get_main_grad_views_for_grad_norm(cls, opt_group_shards, optimizer):
195
196
197
198
199
200
201
202
203
204
205
206

        grad_views = []
        for group_index, opt_group_shard in enumerate(opt_group_shards):
            opt_grad = optimizer.param_groups[group_index]["params"][0].grad
            for param, shard in opt_group_shard["param_map"].items():
                if param_is_not_shared(param) and \
                   param_is_not_tensor_parallel_duplicate(param):
                    
                    grad_view = opt_grad[shard.start:shard.end]
                    grad_views.append(grad_view)

        return grad_views
207
208
209
210
211
212
213
214
215
216

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler, models):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler, models)

217
218
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
219
        args = get_args()
220
        assert args.use_contiguous_buffers_in_local_ddp
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
        self.allocate_main_param_shards(self.opt_group_shards)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # Initialize main params.
        self._copy_model_params_to_main_params()

246
        # Params for grad norm.
247
        self.main_grad_views_for_grad_norm = self.get_main_grad_views_for_grad_norm(
248
249
250
251
            self.opt_group_shards,
            self.optimizer)


252
253
254
    def get_model_parallel_group(self):
        return None

255
256
257
258
259
260
261
262
263
264

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

265
266

    def get_main_grads_for_grad_norm(self):
267
        return self.main_grad_views_for_grad_norm
268

269

270
    def state_dict(self):
271
272
273
274
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
275
        state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
        return state_dict


    def load_state_dict(self, state_dict):
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
301
        current_groups = [ g["params"] for g in self.optimizer.param_groups ]
302
303
        assert "groups" in state_dict, "key 'groups' not in state_dict."
        for current_group, saved_group in zip(current_groups, state_dict["groups"]):
304
305
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)
306

307

308
309
    def zero_grad(self, set_to_none=True):

310
        # Collect model params.
311
312
313
314
315
        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())

316
        # Distributed optimizer requires contiguous buffer; don't set to None.
Lawrence McAfee's avatar
Lawrence McAfee committed
317
        _zero_grad_group_helper(model_params, set_to_none = False)
318

319

320
321
322
323
324
325
326
327
328
329
330
331
332
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
333
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
334
335

        return gbuf_view_items
336

337
    def reduce_model_grads(self, args, timers):
338
339
340
341
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
342

343
344
345
346
347
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

348
        # Reduce-scatter setup.
349
350
351
352
353
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

354
355
356
357
358
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

359
        # Reduce-scatter all grads.
360
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
361
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
362
            torch.distributed._reduce_scatter_base(
363
                gbuf_views[data_parallel_rank],
364
                gbuf,
365
366
                group = data_parallel_group,
            )
367

368
        timers('backward-params-all-reduce').stop()
369

370
    def gather_model_params(self, args, timers):
371
372
373
374
375
376
377
378
379
380
381

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
382
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
383
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
384
            torch.distributed._all_gather_base(
385
                gbuf,
386
387
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
388
            )
389
390
391
392
393
394
395
396
397

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421

    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


422
    def _copy_model_grads_to_main_grads(self):
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)


445
    def _copy_main_params_to_model_params(self):
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)