distrib_optimizer.py 26.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29
# from .optimizer import Float16OptimizerWithFloat16Params
30

31
32
33
# >>>
from lutil import pax, tp, print_seq
# <<<
34

35
36
37
38
39
# >>>
# class Shard:
class Range:
# <<<

40
41
42
43
44
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
45
        return Range(start, start + self.size)
46
47
48
49
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


50
# class DistributedOptimizer(Float16OptimizerWithFloat16Params):
51
class DistributedOptimizer(MixedPrecisionOptimizer):
52
53

    @classmethod
54
    def build_model_gbuf_param_range_map(cls, model, dtype, gbuf_world_range):
55

56
        # Param range map.
57
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
58
        param_range_map = {}
59
60
        for param, param_world_indexes in param_world_index_map.items():

61
            # Param range.
62
63
64
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
65
                param_world_start - gbuf_world_range.start)
66
            param_local_end = min(
67
68
                gbuf_world_range.size,
                param_world_end - gbuf_world_range.start)
69

70
            # Add param, if within local gbuf range.
71
            if param_local_end > param_local_start:
72
73
74
75
76
77
78
79
80
                param_local_range = Range(param_local_start, param_local_end)
                param_world_range = param_local_range.normalize(
                    param_local_start + gbuf_world_range.start)
                sub_param_start = max(0, gbuf_world_range.start-param_world_start)
                sub_param_range = param_local_range.normalize(sub_param_start)
                param_range_map[param] = {
                    "gbuf_world" : param_world_range,
                    "gbuf_local" : param_local_range,
                    "param" : sub_param_range,
81
82
                }

83
        return param_range_map
84
85

    @classmethod
86
    def build_model_gbuf_range(cls, model, dtype):
87
88
89
90

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

91
        # Grad buffer range.
92
93
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
94
        max_gbuf_range_size = int(math.ceil(gbuf_size / data_parallel_world_size))
95

96
97
        # All world ranges. (i.e., across all data parallel ranks)
        gbuf_world_all_ranges = []
98
        for r in range(data_parallel_world_size):
99
100
101
102
            gbuf_world_start = r * max_gbuf_range_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_range_size)
            gbuf_world_range = Range(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_ranges.append(gbuf_world_range)
103

104
105
106
        # Local DP's ranges.
        gbuf_world_range = gbuf_world_all_ranges[data_parallel_rank]
        gbuf_local_range = gbuf_world_range.normalize()
107

108
109
110
111
        # Get each param's ranges.
        param_range_map = cls.build_model_gbuf_param_range_map(model,
                                                               dtype,
                                                               gbuf_world_range)
112
113
114

        # Altogether.
        data = {
115
116
117
118
119
            "local" : gbuf_local_range,
            "world" : gbuf_world_range,
            "world_all" : gbuf_world_all_ranges,
            "param_map" : param_range_map,
            "max_range_size" : max_gbuf_range_size,
120
121
122
123
124
        }

        return data

    @classmethod
125
    def build_model_gbuf_range_map(cls, model):
126
        return {
127
            dtype : cls.build_model_gbuf_range(model, dtype)
128
129
130
131
            for dtype in model._grad_buffers
        }

    @classmethod
132
133
    def build_model_param_gbuf_map(cls, model_gbuf_ranges):
        '''Create a reverse of the model_gbuf_ranges, for referencing in
134
        opposite direction.'''
135
        param_gbuf_map = {}
136
137
138
        for model_index, model_gbuf_range_map in enumerate(model_gbuf_ranges):
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param, param_range_map in gbuf_range_map["param_map"].items():
139
140
141
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

142
143
    # >>>
    # @classmethod
144
    # def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
145
146
147
148
149
150
151
152
153
154

    #     num_groups = len(param_groups)

    #     # Param group map.
    #     param_group_map = {}
    #     for group_index, group in enumerate(param_groups):
    #         for param in group["params"]:
    #             assert param.requires_grad
    #             param_group_map[param] = group_index

155
156
157
158
159
    #     # Optimizer group ranges.
    #     group_ranges = [ {"size": 0, "param_map": {}} for _ in param_groups ]
    #     for model_gbuf_range_map in model_gbuf_ranges:
    #         for dtype, gbuf_range_map in model_gbuf_range_map.items():
    #             for param in gbuf_range_map["param_map"]:
160
161
                    
    #                 group_index = param_group_map[param]
162
163
    #                 group_range = group_ranges[group_index]
    #                 param_size = gbuf_range_map["param_map"][param]["param"].size
164

165
    #                 param_group_start = group_range["size"]
166
    #                 param_group_end = param_group_start + param_size
167
    #                 param_group_range = Range(param_group_start, param_group_end)
168

169
170
    #                 group_range["size"] += param_size
    #                 group_range["param_map"][param] = param_group_range
171

172
173
174
175
    #     # Squeeze zero-size group ranges.
    #     for group_index, group_range in enumerate(group_ranges):
    #         group_range["orig_group"] = param_groups[group_index]
    #     group_ranges = [ g for g in group_ranges if g["size"] > 0 ]
176

177
    #     return group_ranges
178
    @classmethod
179
    def build_optimizer_group_ranges(cls, param_groups, model_gbuf_ranges):
180
181
182
183
184
185
186
187
188
189

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

190
191
192
193
194
        # Optimizer group ranges.
        group_ranges = [ {"params": []} for _ in param_groups ]
        for model_gbuf_range_map in model_gbuf_ranges:
            for dtype, gbuf_range_map in model_gbuf_range_map.items():
                for param in gbuf_range_map["param_map"]:
195
                    group_index = param_group_map[param]
196
197
                    group_range = group_ranges[group_index]
                    group_range["params"].append(param)
198

199
200
201
202
        # Squeeze zero-size group ranges.
        for group_index, group_range in enumerate(group_ranges):
            group_range["orig_group"] = param_groups[group_index]
        group_ranges = [ g for g in group_ranges if len(g["params"]) > 0 ]
203

204
        return group_ranges
205

206

207
    @classmethod
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
    def build_model_and_main_param_groups(cls,
                                        model_gbuf_ranges,
                                        param_gbuf_map,
                                        opt_group_ranges):

        # Three groups of parameters:
        #   float16_groups: original float16 parameters
        #   fp32_from_float16_groups: fp32 copy of float16 parameters
        #   fp32_groups: original fp32 parameters
        full_float16_groups = []
        full_fp32_groups = []
        shard_float16_groups = []
        shard_fp32_groups = []
        shard_fp32_from_float16_groups = []

Lawrence McAfee's avatar
Lawrence McAfee committed
223
        # Allocate (or slice) each group's param shard.
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
        for group_index, group_range in enumerate(opt_group_ranges):

            # Params of this group.
            full_float16_params_this_group = []
            full_fp32_params_this_group = []
            shard_float16_params_this_group = []
            shard_fp32_params_this_group = []
            shard_fp32_from_float16_params_this_group = []
            full_float16_groups.append(full_float16_params_this_group)
            full_fp32_groups.append(full_fp32_params_this_group)
            shard_float16_groups.append(shard_float16_params_this_group)
            shard_fp32_groups.append(shard_fp32_params_this_group)
            shard_fp32_from_float16_groups.append(
                shard_fp32_from_float16_params_this_group)

            for model_param in group_range["params"]:

                model_index, dtype = param_gbuf_map[model_param]
                gbuf_range = model_gbuf_ranges[model_index][dtype]
                param_range = gbuf_range["param_map"][model_param]["param"]
244
245

                # fp16, bf16 params.
246
247
248
249
                if model_param.type() in ['torch.cuda.HalfTensor',
                                          'torch.cuda.BFloat16Tensor']:

                    # Clone model -> main.
Lawrence McAfee's avatar
Lawrence McAfee committed
250
251
                    shard_model_param = model_param.detach().view(-1) \
                        [param_range.start:param_range.end]
252
253
254
255
256
257
258
259
260
261
262
263
264
                    shard_main_param = shard_model_param.clone().float()
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_model_param, model_param)
                    mpu.copy_tensor_model_parallel_attributes(
                        shard_main_param, model_param)
                    if hasattr(model_param, 'shared'):
                        shard_model_param.shared = model_param.shared
                        shard_main_param.shared = model_param.shared

                    # Add to group.
                    full_float16_params_this_group.append(model_param)
                    shard_float16_params_this_group.append(shard_model_param)
                    shard_fp32_from_float16_params_this_group.append(shard_main_param)
265
266
267

                # fp32 params.
                elif param.type() == 'torch.cuda.FloatTensor':
Lawrence McAfee's avatar
Lawrence McAfee committed
268
269
                    shard_model_param = model_param.view(-1) \
                        [param_range.start:param_range.end]
270
271
                    full_fp32_params_this_group.append(model_param)
                    shard_fp32_params_this_group.append(shard_model_param)
272
273
274
275
276
277
278
279

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

Lawrence McAfee's avatar
Lawrence McAfee committed
280
            # Update optimizer's params.
281
282
283
284
285
286
287
288
289
290
291
292
            group_range["orig_group"]["params"] = [
                *shard_fp32_params_this_group,
                *shard_fp32_from_float16_params_this_group,
            ]

        return (
            full_float16_groups,
            full_fp32_groups,
            shard_float16_groups,
            shard_fp32_groups,
            shard_fp32_from_float16_groups,
        )
293
294
295

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
296
                 fp16, bf16, grad_scaler, models):
297
298
299
300

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
301
            fp16, bf16, grad_scaler, models)
302

303
304
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
305
306
307
308
309
        # >>>
        # args = get_args()
        # assert args.use_contiguous_buffers_in_local_ddp
        assert use_contiguous_buffers_in_local_ddp
        # <<<
310

311
312
        # Model grad buffer ranges.
        self.model_gbuf_ranges = []
313
        for model_index, model in enumerate(self.models):
314
315
316
            self.model_gbuf_ranges.append(self.build_model_gbuf_range_map(model))
        self.model_param_gbuf_map = \
            self.build_model_param_gbuf_map(self.model_gbuf_ranges)
317

318
319
        # Optimizer ranges.
        self.opt_group_ranges = self.build_optimizer_group_ranges(
320
            self.optimizer.param_groups,
321
            self.model_gbuf_ranges)
322
323

        # Allocate main param shards.
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
        (
            self.full_float16_groups,
            self.full_fp32_groups,
            self.shard_float16_groups,
            self.shard_fp32_groups,
            self.shard_fp32_from_float16_groups,
        ) = self.build_model_and_main_param_groups(self.model_gbuf_ranges,
                                                   self.model_param_gbuf_map,
                                                   self.opt_group_ranges)

        # print_seq("16 [%d], 16x32 [%d], 32 [%d]." % (
        #     sum(len(g) for g in self.float16_groups),
        #     sum(len(g) for g in self.fp32_from_float16_groups),
        #     sum(len(g) for g in self.fp32_groups),
        # ))
339
340
341
342
343

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
344
            [ g["orig_group"] for g in self.opt_group_ranges ]
345
346
        self.optimizer.load_state_dict(self.optimizer.state_dict())

347
348
349
350
        # >>>
        # # Initialize main params.
        # self._copy_model_params_to_main_params()
        # <<<
351

352
353
        # >>>
        # # Params for grad norm.
354
355
        # self.main_grad_views_for_grad_norm = self.build_main_grad_views_for_grad_norm(
        #     self.opt_group_ranges,
356
357
        #     self.optimizer)
        # <<<
358
359


360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    def get_model_param_range_map(self, param):
        model_index, dtype = self.model_param_gbuf_map[param]
        gbuf_range_map = self.model_gbuf_ranges[model_index][dtype]
        param_range_map = gbuf_range_map["param_map"][param]
        
        # >>>
        # pax(0, {
        #     "param" : param,
        #     "model_index" : model_index,
        #     "dtype" : str(dtype),
        #     "gbuf_range_map" : gbuf_range_map,
        #     "param_range_map" : param_range_map,
        # })
        # <<<

        return param_range_map


378
379
380
    def get_model_parallel_group(self):
        return None

381

382
383
384
385
386
387
388
389
    # def get_main_params(self):
    #     return [ g["params"][0] for g in self.optimizer.param_groups ]
    # def get_main_grads(self):
    #     return [ p.grad for p in self.get_main_params() ]
    # def get_main_param(self, group_index):
    #     return self.get_main_params()[group_index]
    # def get_main_grad(self, group_index):
    #     return self.get_main_param(group_index).grad
390

391

392
393
394
    # >>>
    # def get_main_grads_for_grad_norm(self):
    #     return self.main_grad_views_for_grad_norm
Lawrence McAfee's avatar
Lawrence McAfee committed
395
396
397
398
399
400
    # def get_main_grads_for_grad_norm(self):
    #     raise Exception("....... use 'super' .......")
    #     grads_for_norm = super().get_main_grads_for_grad_norm()
    #     if torch.distributed.get_rank() == 1:
    #         print_seq([ tp(g) for g in grads_for_norm ])
    #     return grads_for_norm
401
    # <<<
402

403

404
405
406
407
408
409
410
    # def state_dict(self):
    #     state_dict = {}
    #     state_dict['optimizer'] = self.optimizer.state_dict()
    #     if self.grad_scaler:
    #         state_dict['grad_scaler'] = self.grad_scaler.state_dict()
    #     state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
    #     return state_dict
411
    def state_dict(self):
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
        raise Exception("fix me.")


    # def load_state_dict(self, state_dict):
    #     # Optimizer.
    #     optimizer_key = 'optimizer'
    #     if optimizer_key not in state_dict:
    #         optimizer_key = 'optimizer_state_dict'
    #         print_rank_0('***WARNING*** loading optimizer from '
    #                      'an old checkpoint ...')
    #     self.optimizer.load_state_dict(state_dict[optimizer_key])

    #     # Grad scaler.
    #     if 'grad_scaler' not in state_dict:
    #         print_rank_0('***WARNING*** found an old checkpoint, will not '
    #                      'load grad scaler ...')
    #     else:
    #         if self.grad_scaler:
    #             self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
    #         else:
    #             print_rank_0('***WARNING*** fould the grad scaler in the '
    #                          'checkpoint but it is None in the class. '
    #                          'Skipping loading grad scaler ...')

    #     # Copy data for the main params.
    #     current_groups = [ g["params"] for g in self.optimizer.param_groups ]
    #     assert "groups" in state_dict, "key 'groups' not in state_dict."
    #     for current_group, saved_group in zip(current_groups, state_dict["groups"]):
    #         for current_param, saved_param in zip(current_group, saved_group):
    #             current_param.data.copy_(saved_param.data)
442
    def load_state_dict(self, state_dict):
443
        raise Exception("hi.")
444

Lawrence McAfee's avatar
Lawrence McAfee committed
445
    # >>>
446
    # def zero_grad(self, set_to_none=True):
447

448
449
450
451
452
    #     # Collect model params.
    #     model_params = []
    #     for model in self.models:
    #         for dtype, param_map in model._grad_buffer_param_index_map.items():
    #             model_params.extend(param_map.keys())
453

454
455
456
457
458
459
460
461
462
463
464
465
466
    #     # Distributed optimizer requires contiguous buffer; don't set to None.
    #     _zero_grad_group_helper(model_params, set_to_none = False)
    # def zero_grad(self, set_to_none=True):
    #     raise Exception("does 'super' work?")
    def zero_grad(self, set_to_none=True):
        """We only need to zero the model related parameters, i.e.,
        float16_groups & fp32_groups. We additionally zero
        fp32_from_float16_groups as a memory optimization to reduce
        fragmentation; in the case of set_to_none==True, the space
        used by this field can be safely deallocated at this point."""
        for groups in (
                self.full_float16_groups,
                self.full_fp32_groups,
Lawrence McAfee's avatar
Lawrence McAfee committed
467
468
                self.shard_float16_groups, # grad empty/unused here?
                self.shard_fp32_groups,
469
470
471
472
                self.shard_fp32_from_float16_groups):
            for group in groups:
                _zero_grad_group_helper(group, set_to_none)
    # <<<
473

474

475
476
477
478
479
480
481
482
483
484
485
486
487
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
488
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
489
490

        return gbuf_view_items
491

492
    def reduce_model_grads(self, args, timers):
493
494
495
496
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
497

498
499
500
501
502
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

503
        # Reduce-scatter setup.
504
505
506
507
508
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

509
510
511
512
513
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

514
        # Reduce-scatter all grads.
515
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
516
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
517
            torch.distributed._reduce_scatter_base(
518
                gbuf_views[data_parallel_rank],
519
                gbuf,
520
521
                group = data_parallel_group,
            )
522

523
        timers('backward-params-all-reduce').stop()
524

525
    def gather_model_params(self, args, timers):
526
527
528
529
530
531
532
533
534
535
536

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
537
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
538
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
539
            torch.distributed._all_gather_base(
540
                gbuf,
541
542
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
543
            )
544
545
546
547
548
549
550
551
552

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
553

Lawrence McAfee's avatar
Lawrence McAfee committed
554
555
556
557

    # >>>
    # def _collect_main_grad_data_for_unscaling(self):
    #     return [ g.data for g in self.get_main_grads() ]
558
    def _collect_main_grad_data_for_unscaling(self):
Lawrence McAfee's avatar
Lawrence McAfee committed
559
560
561
562
563
564
565
566
567
        main_grad_data = [
            param.grad.data
            for group in self.optimizer.param_groups
            for param in group["params"]
        ]
        # print_seq([ tp(g) for g in main_grad_data ])
        return main_grad_data
    # <<<

568

569
570
    # >>>
    # def _copy_model_params_to_main_params(self):
571

572
573
574
    #     for group_index, group_range in enumerate(self.opt_group_ranges):
    #         main_param = self.get_main_param(group_index)
    #         for model_param, main_range in group_range["param_map"].items():
575

576
577
578
579
580
    #             # Model range.
    #             # model_index, dtype = self.param_gbuf_map[model_param]
    #             # model_range = self.model_gbuf_ranges \
    #             #     [model_index][dtype]["param_map"][model_param]["param"]
    #             model_range = self.get_model_param_range_map(model_param)["param"]
581

582
    #             assert main_range.size == model_range.size
583

584
585
586
    #             # Copy shard data.
    #             main_view = main_param[main_range.start:main_range.end]
    #             model_view = model_param.view(-1)[model_range.start:model_range.end]
587

588
589
590
591
    #             main_view.detach().copy_(model_view)
    def _copy_model_params_to_main_params(self):
        raise Exception("check if super's copy works.")
    # <<<
592

593
594
    # >>>
    def _copy_model_grads_to_main_grads(self):
595

596
597
598
599
600
601
602
        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<
603

Lawrence McAfee's avatar
Lawrence McAfee committed
604
605
606
607
608
609
610
611
        def copy_group_grads(full_model_groups, shard_main_groups):
            for full_model_group, shard_main_group in zip(full_model_groups,
                                                          shard_main_groups):
                for full_model_param, shard_main_param in zip(full_model_group,
                                                              shard_main_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
Lawrence McAfee's avatar
Lawrence McAfee committed
612
613
                    assert param_range.size == shard_main_param.nelement()

Lawrence McAfee's avatar
Lawrence McAfee committed
614
                    full_model_grad = full_model_param.main_grad
Lawrence McAfee's avatar
Lawrence McAfee committed
615
616
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
Lawrence McAfee's avatar
Lawrence McAfee committed
617
618
                    shard_main_param.grad = shard_model_grad.float()

Lawrence McAfee's avatar
Lawrence McAfee committed
619
620
621
622
623
624
        # print_seq([ "%s / %d, [%d] %s" % (
        #     k, i, len(g), ", ".join(str(p.nelement()) for p in g),
        # ) for k, gs in [
        #     ("model", self.full_float16_groups),
        #     ("main", self.shard_fp32_from_float16_groups),
        # ] for i, g in enumerate(gs)])
Lawrence McAfee's avatar
Lawrence McAfee committed
625
626
627
628
629

        copy_group_grads(self.full_float16_groups,
                         self.shard_fp32_from_float16_groups)
        copy_group_grads(self.full_fp32_groups,
                         self.shard_fp32_groups)
630

631
        # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
632
633
634
635
636
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
637
638
639
640
641
642
        # <<<
    # <<<

    # >>>
    def _copy_main_params_to_model_params(self):

Lawrence McAfee's avatar
Lawrence McAfee committed
643
644
645
646
647
648
649
650
651
652
653
654
655
        def copy_group_params(shard_main_groups, full_model_groups):
            for shard_main_group, full_model_group in zip(shard_main_groups,
                                                          full_model_groups):
                for shard_main_param, full_model_param in zip(shard_main_group,
                                                              full_model_group):

                    param_range_map = self.get_model_param_range_map(full_model_param)
                    param_range = param_range_map["param"]
                    assert param_range.size == shard_main_param.nelement()

                    full_model_grad = full_model_param.main_grad
                    shard_model_grad = full_model_grad.view(-1) \
                        [param_range.start:param_range.end]
656

657
                    shard_model_grad.data.copy_(shard_main_param)
Lawrence McAfee's avatar
Lawrence McAfee committed
658
659
660
661
662
663
664
665
666
667
668
669
670

        copy_group_params(self.shard_fp32_from_float16_groups,
                          self.full_float16_groups)
        copy_group_params(self.shard_fp32_groups,
                          self.full_fp32_groups)

        # >>>
        # print_seq([
        #     "grad = %s." % tp(p.grad)
        #     for g in self.optimizer.param_groups
        #     for p in g["params"]
        # ])
        # <<<
671
    # <<<