distrib_optimizer.py 23.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
27
28

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
29

30
31
32
# >>>
from lutil import pax, tp, print_seq
# <<<
33
34
35
36
37
38
39
40
41
42
43
44

class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


45
class DistributedOptimizer(MixedPrecisionOptimizer):
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

90
        # All world shards. (i.e., across all data parallel ranks)
91
92
93
94
95
96
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
97
98

        # Local DP's shards.
99
100
101
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

102
        # Get each param's shards.
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
127
128
        '''Create a reverse of the model_gbuf_shards, for referencing in
        opposite direction.'''
129
130
131
132
133
134
135
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    # >>>
    # @classmethod
    # def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

    #     num_groups = len(param_groups)

    #     # Param group map.
    #     param_group_map = {}
    #     for group_index, group in enumerate(param_groups):
    #         for param in group["params"]:
    #             assert param.requires_grad
    #             param_group_map[param] = group_index

    #     # Optimizer group shards.
    #     group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
    #     for model_gbuf_shard_map in model_gbuf_shards:
    #         for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
    #             for param in gbuf_shard_map["param_map"]:
                    
    #                 group_index = param_group_map[param]
    #                 group_shard = group_shards[group_index]
    #                 param_size = gbuf_shard_map["param_map"][param]["param"].size

    #                 param_group_start = group_shard["size"]
    #                 param_group_end = param_group_start + param_size
    #                 param_group_shard = Shard(param_group_start, param_group_end)

    #                 group_shard["size"] += param_size
    #                 group_shard["param_map"][param] = param_group_shard

    #     # Squeeze zero-size group shards.
    #     for group_index, group_shard in enumerate(group_shards):
    #         group_shard["orig_group"] = param_groups[group_index]
    #     group_shards = [ g for g in group_shards if g["size"] > 0 ]

    #     return group_shards
172
173
174
175
176
177
178
179
180
181
182
183
184
    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
185
186
187
188
189
        # >>>
        # group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        group_shards = [ {"params": []} for _ in param_groups ]
        # group_shards = [ [] for _ in param_groups ]
        # <<<
190
191
192
193
194
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
195
                    group_shard["params"].append(param)
196
197
198
199

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
200
        group_shards = [ g for g in group_shards if len(g["params"]) > 0 ]
201

202
203
204
205
        # >>>
        # print_seq("group shards / len = %s." %
        #           ", ".join(str(len(s["params"])) for s in group_shards))
        # <<<
206

207
208
        return group_shards
    # <<<
209

210
211
212
    # >>>
    # @classmethod
    # def allocate_main_param_shards(cls, opt_group_shards):
213

214
215
216
217
218
219
    #     # Allocator method.
    #     allocate_shard = lambda shard_size, dtype : torch.empty(
    #         (shard_size,),
    #         dtype = dtype,
    #         device = torch.cuda.current_device(),
    #         requires_grad = True)
220

221
222
    #     # Allocate each group's param/grad shard.
    #     for group_index, group_shard in enumerate(opt_group_shards):
223

224
225
    #         group_size = group_shard["size"]
    #         assert group_size != 0, "temporary check ... remove me."
226

227
228
229
230
    #         # Allocate shard.
    #         main_param = allocate_shard(group_size, torch.float)
    #         main_param.grad = allocate_shard(group_size, torch.float)
    #         mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)
231

232
233
    #         # Update group's param.
    #         group_shard["orig_group"]["params"] = [ main_param ]
234
    @classmethod
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
    # def allocate_main_params(cls, opt_group_shards):
    def allocate_or_view_main_param_shards(cls,
                                           model_gbuf_shards,
                                           param_gbuf_map,
                                           opt_group_shards):

        # # Allocator method.
        # allocate_shard = lambda shard_size, dtype : torch.empty(
        #     (shard_size,),
        #     dtype = dtype,
        #     device = torch.cuda.current_device(),
        #     requires_grad = True)

        # Allocate each group's param/grad shard.
        for group_index, group_shard in enumerate(opt_group_shards):

            # group_size = group_shard["size"]
            # assert group_size != 0, "temporary check ... remove me."

            # # Allocate shard.
            # main_param = allocate_shard(group_size, torch.float)
            # main_param.grad = allocate_shard(group_size, torch.float)
            # mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

            # # Update group's param.
            # group_shard["orig_group"]["params"] = [ main_param ]

            group_main_params = []
            group_shard["orig_group"]["params"] = group_main_params

            for param in group_shard["params"]:

                model_index, dtype = param_gbuf_map[param]
                gbuf_shard = model_gbuf_shards[model_index][dtype]
                param_shard = gbuf_shard["param_map"][param]["param"]

                pax(0, {
                    "model_index" : model_index,
                    "dtype" : dtype,
                    "gbuf_shard" : gbuf_shard,
                    "param_shard" : param_shard,
                })

                # fp16, bf16 params.
                if param.type() in ['torch.cuda.HalfTensor',
                                    'torch.cuda.BFloat16Tensor']:

                    # Allocate/copy main param/grad.
                    main_param = param.detach()[param_shard.start:param_shard.end].clone().float()
                    if accumulate_allreduce_grads_in_fp32:
                        main_param.grad = param.main_grad[param_shard.start:param_shard.end]
                    else:
                        main_param.grad = param.main_grad.detach()[param_shard.start:param_shard.end].clone().float()

                    # Copy tensor model parallel attributes.
                    mpu.copy_tensor_model_parallel_attributes(main_param, param)
                    if hasattr(param, 'shared'):
                        main_param.shared = param.shared

                # fp32 params.
                elif param.type() == 'torch.cuda.FloatTensor':
                    main_param = param
                    main_param.grad = param.main_grad

                else:
                    raise TypeError('Wrapped parameters must be one of '
                                    'torch.cuda.FloatTensor,  '
                                    'torch.cuda.HalfTensor, or '
                                    'torch.cuda.BFloat16Tensor. '
                                    'Received {}'.format(param.type()))

                # Add to group.
                group_main_params.append(main_param)

    # <<<

    # >>>
    # @classmethod
    # def get_main_grad_views_for_grad_norm(cls, opt_group_shards, optimizer):

    #     grad_views = []
    #     for group_index, opt_group_shard in enumerate(opt_group_shards):
    #         opt_grad = optimizer.param_groups[group_index]["params"][0].grad
    #         for param, shard in opt_group_shard["param_map"].items():
    #             if param_is_not_shared(param) and \
    #                param_is_not_tensor_parallel_duplicate(param):
321
                    
322
323
    #                 grad_view = opt_grad[shard.start:shard.end]
    #                 grad_views.append(grad_view)
324

325
326
    #     return grad_views
    # <<<
327
328
329

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
330
                 fp16, bf16, grad_scaler, models):
331
332
333
334

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
335
            fp16, bf16, grad_scaler, models)
336

337
338
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
339
340
341
342
343
        # >>>
        # args = get_args()
        # assert args.use_contiguous_buffers_in_local_ddp
        assert use_contiguous_buffers_in_local_ddp
        # <<<
344
345
346
347
348
349
350
351
352
353
354
355
356

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
357
358
359
        self.allocate_or_view_main_param_shards(self.model_gbuf_shards,
                                                self.param_gbuf_map,
                                                self.opt_group_shards)
360
361
362
363
364
365
366
367
368
369
370

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # Initialize main params.
        self._copy_model_params_to_main_params()

371
372
373
374
375
376
        # >>>
        # # Params for grad norm.
        # self.main_grad_views_for_grad_norm = self.get_main_grad_views_for_grad_norm(
        #     self.opt_group_shards,
        #     self.optimizer)
        # <<<
377
378


379
380
381
    def get_model_parallel_group(self):
        return None

382
383
384
385
386
387
388
389
390
391

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

392

393
394
395
396
    # >>>
    # def get_main_grads_for_grad_norm(self):
    #     return self.main_grad_views_for_grad_norm
    # <<<
397

398

399
    def state_dict(self):
400
401
402
403
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
404
        state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        return state_dict


    def load_state_dict(self, state_dict):
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
430
        current_groups = [ g["params"] for g in self.optimizer.param_groups ]
431
432
        assert "groups" in state_dict, "key 'groups' not in state_dict."
        for current_group, saved_group in zip(current_groups, state_dict["groups"]):
433
434
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)
435

436

437
438
    def zero_grad(self, set_to_none=True):

439
        # Collect model params.
440
441
442
443
444
        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())

445
        # Distributed optimizer requires contiguous buffer; don't set to None.
Lawrence McAfee's avatar
Lawrence McAfee committed
446
        _zero_grad_group_helper(model_params, set_to_none = False)
447

448

449
450
451
452
453
454
455
456
457
458
459
460
461
    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
462
                gbuf_view_items.append((model_index, dtype, gbuf.data, gbuf_views))
463
464

        return gbuf_view_items
465

466
    def reduce_model_grads(self, args, timers):
467
468
469
470
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
471

472
473
474
475
476
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

477
        # Reduce-scatter setup.
478
479
480
481
482
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()

483
484
485
486
487
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

488
        # Reduce-scatter all grads.
489
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
490
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
491
            torch.distributed._reduce_scatter_base(
492
                gbuf_views[data_parallel_rank],
493
                gbuf,
494
495
                group = data_parallel_group,
            )
496

497
        timers('backward-params-all-reduce').stop()
498

499
    def gather_model_params(self, args, timers):
500
501
502
503
504
505
506
507
508
509
510

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
511
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
512
        for index, (model_index, dtype, gbuf, gbuf_views) in enumerate(gbuf_view_items):
513
            torch.distributed._all_gather_base(
514
                gbuf,
515
516
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
517
            )
518
519
520
521
522
523
524
525
526

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


551
    def _copy_model_grads_to_main_grads(self):
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)


574
    def _copy_main_params_to_model_params(self):
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)