"sgl-kernel/python/vscode:/vscode.git/clone" did not exist on "20fd53b8f66358c922064c466b49604ea0b8fba9"
arguments.py 35.7 KB
Newer Older
Raul Puri's avatar
Raul Puri committed
1
# coding=utf-8
Mohammad's avatar
Mohammad committed
2
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
Raul Puri's avatar
Raul Puri committed
3
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Mohammad's avatar
Mohammad committed
16
"""Megatron arguments."""
Raul Puri's avatar
Raul Puri committed
17
18
19
20

import argparse
import os

21
import torch
22
from megatron import fused_kernels
Raul Puri's avatar
Raul Puri committed
23

24
25
def parse_args(extra_args_provider=None, defaults={},
               ignore_unknown_args=False):
Mohammad's avatar
Mohammad committed
26
    """Parse all arguments."""
27
28
    parser = argparse.ArgumentParser(description='Megatron-LM Arguments',
                                     allow_abbrev=False)
Mohammad's avatar
Mohammad committed
29

Mohammad's avatar
Mohammad committed
30
31
32
33
34
35
36
37
38
39
40
41
    # Standard arguments.
    parser = _add_network_size_args(parser)
    parser = _add_regularization_args(parser)
    parser = _add_training_args(parser)
    parser = _add_initialization_args(parser)
    parser = _add_learning_rate_args(parser)
    parser = _add_checkpointing_args(parser)
    parser = _add_mixed_precision_args(parser)
    parser = _add_distributed_args(parser)
    parser = _add_validation_args(parser)
    parser = _add_data_args(parser)
    parser = _add_autoresume_args(parser)
Neel Kant's avatar
Neel Kant committed
42
    parser = _add_realm_args(parser)
43
    parser = _add_vit_args(parser)
44
    parser = _add_logging_args(parser)
Mohammad's avatar
Mohammad committed
45
46
47
48

    # Custom arguments.
    if extra_args_provider is not None:
        parser = extra_args_provider(parser)
Mohammad's avatar
Mohammad committed
49

Mohammad's avatar
Mohammad committed
50
    # Parse.
51
52
53
54
    if ignore_unknown_args:
        args, _ = parser.parse_known_args()
    else:
        args = parser.parse_args()
Mohammad's avatar
Mohammad committed
55

Mohammad's avatar
Mohammad committed
56
57
58
    # Distributed args.
    args.rank = int(os.getenv('RANK', '0'))
    args.world_size = int(os.getenv("WORLD_SIZE", '1'))
mohammad's avatar
mohammad committed
59
    # Tensor model parallel size.
60
61
    args.tensor_model_parallel_size = min(
        args.tensor_model_parallel_size, args.world_size)
mohammad's avatar
mohammad committed
62
63
64
65
    assert args.world_size % args.tensor_model_parallel_size == 0, 'world size'\
        ' ({}) is not divisible by tensor model parallel size ({})'.format(
            args.world_size, args.tensor_model_parallel_size)
    # Pipeline model parallel size.
66
67
68
    args.pipeline_model_parallel_size = min(
        args.pipeline_model_parallel_size,
        (args.world_size // args.tensor_model_parallel_size))
mohammad's avatar
mohammad committed
69
    # Checks.
70
71
72
    model_parallel_size = args.pipeline_model_parallel_size * \
                          args.tensor_model_parallel_size
    assert args.world_size % model_parallel_size == 0, 'world size is not'\
73
        ' divisible by tensor parallel size ({}) times pipeline parallel ' \
mohammad's avatar
mohammad committed
74
75
        'size ({})'.format(args.world_size, args.tensor_model_parallel_size,
                           args.pipeline_model_parallel_size)
76
    args.data_parallel_size = args.world_size // model_parallel_size
Mohammad's avatar
Mohammad committed
77
    if args.rank == 0:
mohammad's avatar
mohammad committed
78
79
80
81
82
83
84
        print('using world size: {}, data-parallel-size: {}, '
              'tensor-model-parallel size: {}, '
              'pipeline-model-parallel size: {} '.format(
                  args.world_size, args.data_parallel_size,
                  args.tensor_model_parallel_size,
                  args.pipeline_model_parallel_size), flush=True)

85
86
87
88
89
90
91
92
93
94
95
    # Deprecated arguments
    assert args.batch_size is None, '--batch-size argument is no longer ' \
        'valid, use --micro-batch-size instead'
    del args.batch_size
    assert args.warmup is None, '--warmup argument is no longer valid, use ' \
        '--lr-warmup-fraction instead'
    del args.warmup
    assert args.model_parallel_size is None, '--model-parallel-size is no ' \
        'longer valid, use --tensor-model-parallel-size instead'
    del args.model_parallel_size

Jared Casper's avatar
Jared Casper committed
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    # Set input defaults.
    for key in defaults:
        # For default to be valid, it should not be provided in the
        # arguments that are passed to the program. We check this by
        # ensuring the arg is set to None.
        if getattr(args, key) is not None:
            if args.rank == 0:
                print('WARNING: overriding default arguments for {key}:{v} \
                       with {key}:{v2}'.format(key=key, v=defaults[key],
                                               v2=getattr(args, key)),
                                               flush=True)
        else:
            setattr(args, key, defaults[key])

mohammad's avatar
mohammad committed
110
111
112
113
114
115
116
117
118
    # Batch size.
    assert args.micro_batch_size is not None
    assert args.micro_batch_size > 0
    if args.global_batch_size is None:
        args.global_batch_size = args.micro_batch_size * args.data_parallel_size
        if args.rank == 0:
            print('setting global batch size to {}'.format(
                args.global_batch_size), flush=True)
    assert args.global_batch_size > 0
119
120
121
122
123
124
125
    if args.num_layers_per_virtual_pipeline_stage is not None:
        assert args.num_layers % args.num_layers_per_virtual_pipeline_stage == 0, \
            'number of layers is not divisible by number of layers per virtual ' \
            'pipeline stage'
        args.virtual_pipeline_model_parallel_size = \
            (args.num_layers // args.pipeline_model_parallel_size) // \
            args.num_layers_per_virtual_pipeline_stage
126
        assert args.global_batch_size % args.pipeline_model_parallel_size == 0, \
127
            'global batch size is not divisible by pipeline parallel size when ' \
128
            'using interleaved schedule'
129
130
    else:
        args.virtual_pipeline_model_parallel_size = None
Mohammad's avatar
Mohammad committed
131

132
133
134
135
136
137
138
139
    # Parameters dtype.
    args.params_dtype = torch.float
    if args.fp16:
        args.params_dtype = torch.half
    if args.rank == 0:
        print('using {} for parameters ...'.format(args.params_dtype),
              flush=True)

140
141
142
    if args.dataloader_type is None:
        args.dataloader_type = 'single'

143
144
145
    # Consumed tokens.
    args.consumed_train_samples = 0
    args.consumed_valid_samples = 0
146

147
148
149
150
151
152
153
154
155
    # Iteration-based training.
    if args.train_iters:
        # If we use iteration-based training, make sure the
        # sample-based options are off.
        assert args.train_samples is None, \
            'expected iteration-based training'
        assert args.lr_decay_samples is None, \
            'expected iteration-based learning rate decay'
        assert args.lr_warmup_samples == 0, \
156
            'expected iteration-based learning rate warmup'
157
158
        assert args.rampup_batch_size is None, \
            'expected no batch-size rampup for iteration-based training'
159
        if args.lr_warmup_fraction is not None:
160
            assert args.lr_warmup_iters == 0, \
161
                'can only specify one of lr-warmup-fraction and lr-warmup-iters'
162
163
164
165
166
167
168
169
170
171
172

    # Sample-based training.
    if args.train_samples:
        # If we use sample-based training, make sure the
        # iteration-based options are off.
        assert args.train_iters is None, \
            'expected sample-based training'
        assert args.lr_decay_iters is None, \
            'expected sample-based learning rate decay'
        assert args.lr_warmup_iters == 0, \
            'expected sample-based learnig rate warmup'
173
        if args.lr_warmup_fraction is not None:
174
            assert args.lr_warmup_samples == 0, \
175
176
                'can only specify one of lr-warmup-fraction ' \
                'and lr-warmup-samples'
177

178
    # Check required arguments.
Mohammad's avatar
Mohammad committed
179
180
    required_args = ['num_layers', 'hidden_size', 'num_attention_heads',
                     'max_position_embeddings']
181
    for req_arg in required_args:
Mohammad's avatar
Mohammad committed
182
        _check_arg_is_not_none(args, req_arg)
183

Mohammad's avatar
Mohammad committed
184
    # Checks.
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    if args.ffn_hidden_size is None:
        args.ffn_hidden_size = 4 * args.hidden_size

    if args.kv_channels is None:
        assert args.hidden_size % args.num_attention_heads == 0
        args.kv_channels = args.hidden_size // args.num_attention_heads

    if args.seq_length is not None:
        assert args.encoder_seq_length is None
        args.encoder_seq_length = args.seq_length
    else:
        assert args.encoder_seq_length is not None
        args.seq_length = args.encoder_seq_length
 
Mohammad's avatar
Mohammad committed
199
    assert args.hidden_size % args.num_attention_heads == 0
Mohammad's avatar
Mohammad committed
200
201
202
203
    if args.seq_length is not None:
        assert args.max_position_embeddings >= args.seq_length
    if args.lr is not None:
        assert args.min_lr <= args.lr
Mohammad's avatar
Mohammad committed
204
205
    if args.save is not None:
        assert args.save_interval is not None
mohammad's avatar
mohammad committed
206
207
208
    # Mixed precision checks.
    if args.fp16_lm_cross_entropy:
        assert args.fp16, 'lm cross entropy in fp16 only support in fp16 mode.'
209
210
    if args.fp32_residual_connection:
        assert args.fp16, \
mshoeybi's avatar
mshoeybi committed
211
            'residual connection in fp32 only supported when using fp16.'
mohammad's avatar
mohammad committed
212
213
214
215
216
    # Activation checkpointing.
    if args.distribute_checkpointed_activations:
        assert args.checkpoint_activations, \
            'for distribute-checkpointed-activations to work you '\
            'need to enable checkpoint-activations'
Vijay Korthikanti's avatar
Vijay Korthikanti committed
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233

    # custom kernel constraints check
    seq_len = args.seq_length
    attn_batch_size = \
        (args.num_attention_heads / args.tensor_model_parallel_size) * \
        args.micro_batch_size

    # constraints on sequence length and attn_batch_size to enable warp based
    # optimization and upper triangular optimization (for causal mask)
    custom_kernel_constraint = seq_len > 16 and seq_len <=2048 and \
        seq_len % 4 == 0 and attn_batch_size % 4 == 0

    if args.fp16 and custom_kernel_constraint and args.masked_softmax_fusion:
        print('WARNING: constraints for invoking optimized'
            ' fused softmax kernel are not met. We default back to unfused'
            ' kernel invocations.')

234
235
236
237
    # Load scaled_masked_softmax_fusion_kernels
    if args.masked_softmax_fusion:
        fused_kernels.load_scaled_upper_triang_masked_softmax_fusion_kernel()
        fused_kernels.load_scaled_masked_softmax_fusion_kernel()
238

239
240
241
242
    # Load mixed precision fused layer norm.
    if args.fp32_residual_connection:
        fused_kernels.load_fused_mix_prec_layer_norm_kernel()

Mohammad's avatar
Mohammad committed
243
244
    _print_args(args)
    return args
Mohammad's avatar
Mohammad committed
245
246


Mohammad's avatar
Mohammad committed
247
248
249
def _print_args(args):
    """Print arguments."""
    if args.rank == 0:
mohammad's avatar
mohammad committed
250
251
        print('------------------------ arguments ------------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
252
253
        str_list = []
        for arg in vars(args):
mohammad's avatar
mohammad committed
254
            dots = '.' * (48 - len(arg))
Mohammad's avatar
Mohammad committed
255
256
257
            str_list.append('  {} {} {}'.format(arg, dots, getattr(args, arg)))
        for arg in sorted(str_list, key=lambda x: x.lower()):
            print(arg, flush=True)
mohammad's avatar
mohammad committed
258
259
        print('-------------------- end of arguments ---------------------',
              flush=True)
Mohammad's avatar
Mohammad committed
260
261


262
263
264
265
def _check_arg_is_not_none(args, arg):
    assert getattr(args, arg) is not None, '{} argument is None'.format(arg)


Mohammad's avatar
Mohammad committed
266
def _add_network_size_args(parser):
Mohammad's avatar
Mohammad committed
267
    group = parser.add_argument_group(title='network size')
Mohammad's avatar
Mohammad committed
268

269
    group.add_argument('--num-layers', type=int, default=None,
Mohammad's avatar
Mohammad committed
270
                       help='Number of transformer layers.')
271
    group.add_argument('--hidden-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
272
                       help='Tansformer hidden size.')
273
    group.add_argument('--ffn-hidden-size', type=int, default=None,
274
275
                       help='Transformer Feed-Forward Network hidden size. '
                       'This is set to 4*hidden-size if not provided')
276
    group.add_argument('--num-attention-heads', type=int, default=None,
Mohammad's avatar
Mohammad committed
277
                       help='Number of transformer attention heads.')
278
    group.add_argument('--kv-channels', type=int, default=None,
279
280
281
282
                       help='Projection weights dimension in multi-head '
                       'attention. This is set to '
                       '   args.hidden_size // args.num_attention_heads '
                       'if not provided.')
283
    group.add_argument('--max-position-embeddings', type=int, default=None,
Mohammad's avatar
Mohammad committed
284
285
286
287
288
                       help='Maximum number of position embeddings to use. '
                       'This is the size of position embedding.')
    group.add_argument('--make-vocab-size-divisible-by', type=int, default=128,
                       help='Pad the vocab size to be divisible by this value.'
                       'This is added for computational efficieny reasons.')
Mohammad's avatar
Mohammad committed
289
290
    group.add_argument('--layernorm-epsilon', type=float, default=1e-5,
                       help='Layer norm epsilon.')
Mohammad's avatar
Mohammad committed
291
292
293
294
    group.add_argument('--apply-residual-connection-post-layernorm',
                       action='store_true',
                       help='If set, use original BERT residula connection '
                       'ordering.')
295
296
297
298
    group.add_argument('--openai-gelu', action='store_true',
                       help='Use OpenAIs GeLU implementation. This option'
                       'should not be used unless for backward compatibility'
                       'reasons.')
299
    group.add_argument('--onnx-safe', type=bool, required=False,
300
301
                       help='Use workarounds for known problems with '
                       'Torch ONNX exporter')
302
303
304
    group.add_argument('--bert-no-binary-head', action='store_false',
                       help='Disable BERT binary head.',
                       dest='bert_binary_head')
Mohammad's avatar
Mohammad committed
305

Mohammad's avatar
Mohammad committed
306
307
308
    return parser


309
310
311
312
313
def _add_logging_args(parser):
    group = parser.add_argument_group(title='logging')

    group.add_argument('--log-params-norm', action='store_true',
                       help='If set, calculate and log parameters norm.')
314
315
    group.add_argument('--tensorboard-log-interval', type=int, default=1,
                       help='Report to tensorboard interval.')
316
317
318
319
    group.add_argument('--tensorboard-queue-size', type=int, default=1000,
                       help='Size of the tensorboard queue for pending events '
                       'and summaries before one of the ‘add’ calls forces a '
                       'flush to disk.')
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    group.add_argument('--log-timers-to-tensorboard', action='store_true',
                       help='If set, write timers to tensorboard.')
    group.add_argument('--log-batch-size-to-tensorboard', action='store_true',
                       help='If set, write batch-size to tensorboard.')
    group.add_argument('--no-log-learnig-rate-to-tensorboard',
                       action='store_false',
                       help='Disable learning rate logging to tensorboard.',
                       dest='log_learning_rate_to_tensorboard')
    group.add_argument('--no-log-loss-scale-to-tensorboard',
                       action='store_false',
                       help='Disable loss-scale logging to tensorboard.',
                       dest='log_loss_scale_to_tensorboard')
    group.add_argument('--log-validation-ppl-to-tensorboard',
                       action='store_true',
                       help='If set, write validation perplexity to '
                       'tensorboard.')
336
337
338
339

    return parser


Mohammad's avatar
Mohammad committed
340
def _add_regularization_args(parser):
Mohammad's avatar
Mohammad committed
341
342
343
    group = parser.add_argument_group(title='regularization')

    group.add_argument('--attention-dropout', type=float, default=0.1,
344
                       help='Post attention dropout probability.')
Mohammad's avatar
Mohammad committed
345
346
347
348
349
350
    group.add_argument('--hidden-dropout', type=float, default=0.1,
                       help='Dropout probability for hidden state transformer.')
    group.add_argument('--weight-decay', type=float, default=0.01,
                       help='Weight decay coefficient for L2 regularization.')
    group.add_argument('--clip-grad', type=float, default=1.0,
                       help='Gradient clipping based on global L2 norm.')
351
    group.add_argument('--adam-beta1', type=float, default=0.9,
352
353
                       help='First coefficient for computing running averages '
                       'of gradient and its square')
354
    group.add_argument('--adam-beta2', type=float, default=0.999,
355
356
                       help='Second coefficient for computing running averages '
                       'of gradient and its square')
357
    group.add_argument('--adam-eps', type=float, default=1e-08,
358
                       help='Term added to the denominator to improve'
359
                       'numerical stability')
360
361
    group.add_argument('--sgd-momentum', type=float, default=0.9,
                       help='Momentum factor for sgd')
Mohammad's avatar
Mohammad committed
362
363
364

    return parser

Mohammad's avatar
Mohammad committed
365
366

def _add_training_args(parser):
Mohammad's avatar
Mohammad committed
367
368
    group = parser.add_argument_group(title='training')

369
    group.add_argument('--micro-batch-size', type=int, default=None,
Mohammad's avatar
Mohammad committed
370
371
                       help='Batch size per model instance (local batch size). '
                       'Global batch size is local batch size times data '
mohammad's avatar
mohammad committed
372
                       'parallel size times number of micro batches.')
373
374
375
    group.add_argument('--batch-size', type=int, default=None,
                       help='Old batch size parameter, do not use. '
                       'Use --micro-batch-size instead')
mohammad's avatar
mohammad committed
376
    group.add_argument('--global-batch-size', type=int, default=None,
mohammad's avatar
mohammad committed
377
378
379
                       help='Training batch size. If set, it should be a '
                       'multiple of micro-batch-size times data-parallel-size. '
                       'If this value is None, then '
mohammad's avatar
mohammad committed
380
                       'use micro-batch-size * data-parallel-size as the '
mohammad's avatar
mohammad committed
381
382
                       'global batch size. This choice will result in 1 for '
                       'number of micro-batches.')
mohammad's avatar
mohammad committed
383
384
385
386
387
388
389
390
391
392
393
394
    group.add_argument('--rampup-batch-size', nargs='*', default=None,
                       help='Batch size ramp up with the following values:'
                       '  --rampup-batch-size <start batch size> '
                       '                      <batch size incerement> '
                       '                      <ramp-up samples> '
                       'For example:'
                       '   --rampup-batch-size 16 8 300000 \ '
                       '   --global-batch-size 1024'
                       'will start with global batch size 16 and over '
                       ' (1024 - 16) / 8 = 126 intervals will increase'
                       'the batch size linearly to 1024. In each interval'
                       'we will use approximately 300000 / 126 = 2380 samples.')
Mohammad's avatar
Mohammad committed
395
396
397
    group.add_argument('--checkpoint-activations', action='store_true',
                       help='Checkpoint activation to allow for training '
                       'with larger models, sequences, and batch sizes.')
398
399
400
401
    group.add_argument('--distribute-checkpointed-activations',
                       action='store_true',
                       help='If set, distribute checkpointed activations '
                       'across model parallel group.')
Mohammad's avatar
Mohammad committed
402
403
    group.add_argument('--checkpoint-num-layers', type=int, default=1,
                       help='chunk size (number of layers) for checkpointing.')
Mohammad's avatar
Mohammad committed
404
    group.add_argument('--train-iters', type=int, default=None,
Mohammad's avatar
Mohammad committed
405
                       help='Total number of iterations to train over all '
406
407
408
409
410
411
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
    group.add_argument('--train-samples', type=int, default=None,
                       help='Total number of samples to train over all '
                       'training runs. Note that either train-iters or '
                       'train-samples should be provided.')
Mohammad's avatar
Mohammad committed
412
413
414
415
416
    group.add_argument('--log-interval', type=int, default=100,
                       help='Report loss and timing interval.')
    group.add_argument('--exit-interval', type=int, default=None,
                       help='Exit the program after the iteration is divisible '
                       'by this value.')
417
418
    group.add_argument('--exit-duration-in-mins', type=int, default=None,
                       help='Exit the program after this many minutes.')
Mohammad's avatar
Mohammad committed
419
420
    group.add_argument('--tensorboard-dir', type=str, default=None,
                       help='Write TensorBoard logs to this directory.')
421
    group.add_argument('--no-masked-softmax-fusion',
422
423
424
                       action='store_false',
                       help='Disable fusion of query_key_value scaling, '
                       'masking, and softmax.',
425
                       dest='masked_softmax_fusion')
426
427
428
429
430
431
    group.add_argument('--no-bias-gelu-fusion', action='store_false',
                       help='Disable bias and gelu fusion.',
                       dest='bias_gelu_fusion')
    group.add_argument('--no-bias-dropout-fusion', action='store_false',
                       help='Disable bias and dropout fusion.',
                       dest='bias_dropout_fusion')
432
433
434
    group.add_argument('--optimizer', type=str, default='adam',
                       choices=['adam', 'sgd'],
                       help='Optimizer function')
435
    group.add_argument('--dataloader-type', type=str, default=None,
Vijay Korthikanti's avatar
Vijay Korthikanti committed
436
437
                       choices=['single', 'cyclic'],
                       help='Single pass vs multiple pass data loader')
Mohammad's avatar
Mohammad committed
438
439
440
    return parser


Mohammad's avatar
Mohammad committed
441
def _add_initialization_args(parser):
Mohammad's avatar
Mohammad committed
442
443
444
445
446
447
448
449
    group = parser.add_argument_group(title='initialization')

    group.add_argument('--seed', type=int, default=1234,
                       help='Random seed used for python, numpy, '
                       'pytorch, and cuda.')
    group.add_argument('--init-method-std', type=float, default=0.02,
                       help='Standard deviation of the zero mean normal '
                       'distribution used for weight initialization.')
450
451
    group.add_argument('--init-method-xavier-uniform', action='store_true',
                       help='Enable Xavier uniform parameter initialization')
Mohammad's avatar
Mohammad committed
452

Mohammad's avatar
Mohammad committed
453
454
455
    return parser


Mohammad's avatar
Mohammad committed
456
def _add_learning_rate_args(parser):
Mohammad's avatar
Mohammad committed
457
458
    group = parser.add_argument_group(title='learning rate')

Mohammad's avatar
Mohammad committed
459
    group.add_argument('--lr', type=float, default=None,
Mohammad's avatar
Mohammad committed
460
461
462
463
                       help='Initial learning rate. Depending on decay style '
                       'and initial warmup, the learing rate at each '
                       'iteration would be different.')
    group.add_argument('--lr-decay-style', type=str, default='linear',
mohammad's avatar
mohammad committed
464
                       choices=['constant', 'linear', 'cosine'],
Mohammad's avatar
Mohammad committed
465
466
467
468
                       help='Learning rate decay function.')
    group.add_argument('--lr-decay-iters', type=int, default=None,
                       help='number of iterations to decay learning rate over,'
                       ' If None defaults to `--train-iters`')
469
470
471
    group.add_argument('--lr-decay-samples', type=int, default=None,
                       help='number of samples to decay learning rate over,'
                       ' If None defaults to `--train-samples`')
472
473
474
    group.add_argument('--lr-warmup-fraction', type=float, default=None,
                       help='fraction of lr-warmup-(iters/samples) to use '
                       'for warmup (as a float)')
475
476
477
478
479
480
    group.add_argument('--lr-warmup-iters', type=int, default=0,
                       help='number of iterations to linearly warmup '
                       'learning rate over.')
    group.add_argument('--lr-warmup-samples', type=int, default=0,
                       help='number of samples to linearly warmup '
                       'learning rate over.')
481
    group.add_argument('--warmup', type=int, default=None,
482
                       help='Old lr warmup argument, do not use. Use one of the'
483
                       '--lr-warmup-* arguments above')
Mohammad's avatar
Mohammad committed
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    group.add_argument('--min-lr', type=float, default=0.0,
                       help='Minumum value for learning rate. The scheduler'
                       'clip values below this threshold.')
    group.add_argument('--override-lr-scheduler', action='store_true',
                       help='Reset the values of the scheduler (learning rate,'
                       'warmup iterations, minimum learning rate, maximum '
                       'number of iterations, and decay style from input '
                       'arguments and ignore values from checkpoints. Note'
                       'that all the above values will be reset.')
    group.add_argument('--use-checkpoint-lr-scheduler', action='store_true',
                       help='Use checkpoint to set the values of the scheduler '
                       '(learning rate, warmup iterations, minimum learning '
                       'rate, maximum number of iterations, and decay style '
                       'from checkpoint and ignore input arguments.')

    return parser


Mohammad's avatar
Mohammad committed
502
def _add_checkpointing_args(parser):
Mohammad's avatar
Mohammad committed
503
504
505
506
507
508
    group = parser.add_argument_group(title='checkpointing')

    group.add_argument('--save', type=str, default=None,
                       help='Output directory to save checkpoints to.')
    group.add_argument('--save-interval', type=int, default=None,
                       help='Number of iterations between checkpoint saves.')
509
    group.add_argument('--no-save-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
510
                       help='Do not save current optimizer.')
511
    group.add_argument('--no-save-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
512
513
514
                       help='Do not save current rng state.')
    group.add_argument('--load', type=str, default=None,
                       help='Directory containing a model checkpoint.')
Jared Casper's avatar
Jared Casper committed
515
    group.add_argument('--no-load-optim', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
516
                       help='Do not load optimizer when loading checkpoint.')
Jared Casper's avatar
Jared Casper committed
517
    group.add_argument('--no-load-rng', action='store_true', default=None,
Mohammad's avatar
Mohammad committed
518
519
520
521
522
523
524
525
526
                       help='Do not load rng state when loading checkpoint.')
    group.add_argument('--finetune', action='store_true',
                       help='Load model for finetuning. Do not load optimizer '
                       'or rng state from checkpoint and set iteration to 0. '
                       'Assumed when loading a release checkpoint.')

    return parser


Mohammad's avatar
Mohammad committed
527
def _add_mixed_precision_args(parser):
Mohammad's avatar
Mohammad committed
528
529
530
531
    group = parser.add_argument_group(title='mixed precision')

    group.add_argument('--fp16', action='store_true',
                       help='Run model in fp16 mode.')
mohammad's avatar
mohammad committed
532
533
534
535
536
537
538
539
540
541
542
543
    group.add_argument('--loss-scale', type=float, default=None,
                       help='Static loss scaling, positive power of 2 '
                       'values can improve fp16 convergence. If None, dynamic'
                       'loss scaling is used.')
    group.add_argument('--initial-loss-scale', type=float, default=2**32,
                       help='Initial loss-scale for dynamic loss scaling.')
    group.add_argument('--min-loss-scale', type=float, default=1.0,
                       help='Minimum loss scale for dynamic loss scale.')
    group.add_argument('--loss-scale-window', type=float, default=1000,
                       help='Window over which to raise/lower dynamic scale.')
    group.add_argument('--hysteresis', type=int, default=2,
                       help='hysteresis for dynamic loss scaling')
544
545
    group.add_argument('--fp32-residual-connection', action='store_true',
                       help='Move residual connections to fp32.')
546
547
548
    group.add_argument('--no-query-key-layer-scaling', action='store_false',
                       help='Do not scale Q * K^T by 1 / layer-number.',
                       dest='apply_query_key_layer_scaling')
Mohammad's avatar
Mohammad committed
549
    group.add_argument('--attention-softmax-in-fp32', action='store_true',
550
551
552
                       help='Run attention masking and softmax in fp32. '
                       'This flag is ignored unless '
                       '--no-query-key-layer-scaling is specified.')
Mohammad's avatar
Mohammad committed
553
554
    group.add_argument('--fp32-allreduce', action='store_true',
                       help='All-reduce in fp32')
555
556
557
558
    group.add_argument('--fp16-lm-cross-entropy', action='store_true',
                       help='Move the cross entropy unreduced loss calculation'
                       'for lm head to fp16.')

Mohammad's avatar
Mohammad committed
559
560
561
    return parser


Mohammad's avatar
Mohammad committed
562
def _add_distributed_args(parser):
563
564
    group = parser.add_argument_group(title='distributed')

565
566
567
568
    group.add_argument('--tensor-model-parallel-size', type=int, default=1,
                       help='Degree of tensor model parallelism.')
    group.add_argument('--pipeline-model-parallel-size', type=int, default=1,
                       help='Degree of pipeline model parallelism.')
569
570
571
    group.add_argument('--model-parallel-size', type=int, default=None,
                       help='Old model parallel argument, do not use. Use '
                       '--tensor-model-parallel-size instead.')
572
573
    group.add_argument('--num-layers-per-virtual-pipeline-stage', type=int, default=None,
                       help='Number of layers per virtual pipeline stage')
Mohammad's avatar
Mohammad committed
574
575
576
577
    group.add_argument('--distributed-backend', default='nccl',
                       choices=['nccl', 'gloo'],
                       help='Which backend to use for distributed training.')
    group.add_argument('--DDP-impl', default='local',
Mohammad's avatar
Mohammad committed
578
                       choices=['local', 'torch'],
Mohammad's avatar
Mohammad committed
579
580
                       help='which DistributedDataParallel implementation '
                       'to use.')
581
582
583
    group.add_argument('--no-scatter-gather-tensors-in-pipeline', action='store_false',
                       help='Use scatter/gather to optimize communication of tensors in pipeline',
                       dest='scatter_gather_tensors_in_pipeline')
Mohammad's avatar
Mohammad committed
584
585
    group.add_argument('--local_rank', type=int, default=None,
                       help='local rank passed from distributed launcher.')
586
    group.add_argument('--lazy-mpu-init', type=bool, required=False,
587
588
589
590
591
592
593
594
                       help='If set to True, initialize_megatron() '
                       'skips DDP initialization and returns function to '
                       'complete it instead.Also turns on '
                       '--use-cpu-initialization flag. This is for '
                       'external DDP manager.' )
    group.add_argument('--use-cpu-initialization', action='store_true',
                       default=None, help='If set, affine parallel weights '
                       'initialization uses CPU' )
Mohammad's avatar
Mohammad committed
595
596
597
    return parser


Mohammad's avatar
Mohammad committed
598
def _add_validation_args(parser):
Mohammad's avatar
Mohammad committed
599
600
601
602
603
604
605
606
607
    group = parser.add_argument_group(title='validation')

    group.add_argument('--eval-iters', type=int, default=100,
                       help='Number of iterations to run for evaluation'
                       'validation/test for.')
    group.add_argument('--eval-interval', type=int, default=1000,
                       help='Interval between running evaluation on '
                       'validation set.')

Mohammad's avatar
Mohammad committed
608
609
610
    return parser


Mohammad's avatar
Mohammad committed
611
def _add_data_args(parser):
Mohammad's avatar
Mohammad committed
612
613
    group = parser.add_argument_group(title='data and dataloader')

mohammad's avatar
mohammad committed
614
    group.add_argument('--data-path', nargs='*', default=None,
mohammad's avatar
mohammad committed
615
616
617
618
                       help='Path to the training dataset. Accepted format:'
                       '1) a single data path, 2) multiple datasets in the'
                       'form: dataset1-weight dataset1-path dataset2-weight '
                       'dataset2-path ...')
Mohammad's avatar
Mohammad committed
619
    group.add_argument('--split', type=str, default='969, 30, 1',
Mohammad's avatar
Mohammad committed
620
621
                       help='Comma-separated list of proportions for training,'
                       ' validation, and test split. For example the split '
622
623
                       '`90,5,5` will use 90%% of data for training, 5%% for '
                       'validation and 5%% for test.')
Mohammad's avatar
Mohammad committed
624
    group.add_argument('--vocab-file', type=str, default=None,
Mohammad's avatar
Mohammad committed
625
                       help='Path to the vocab file.')
Mohammad's avatar
Mohammad committed
626
627
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file.')
Mohammad's avatar
Mohammad committed
628
    group.add_argument('--seq-length', type=int, default=None,
629
                       help='Maximum sequence length to process.')
630
    group.add_argument('--encoder-seq-length', type=int, default=None,
631
632
                       help='Maximum encoder sequence length to process.'
                       'This should be exclusive of --seq-length')
633
634
    group.add_argument('--decoder-seq-length', type=int, default=None,
                       help="Maximum decoder sequence length to process.")
Mohammad's avatar
Mohammad committed
635
636
637
638
639
640
641
642
    group.add_argument('--mask-prob', type=float, default=0.15,
                       help='Probability of replacing a token with mask.')
    group.add_argument('--short-seq-prob', type=float, default=0.1,
                       help='Probability of producing a short sequence.')
    group.add_argument('--mmap-warmup', action='store_true',
                       help='Warm up mmap files.')
    group.add_argument('--num-workers', type=int, default=2,
                       help="Dataloader number of workers.")
Mohammad's avatar
Mohammad committed
643
644
645
    group.add_argument('--tokenizer-type', type=str,
                       default=None,
                       choices=['BertWordPieceLowerCase',
Raul Puri's avatar
Raul Puri committed
646
                                'BertWordPieceCase',
Mohammad's avatar
Mohammad committed
647
648
                                'GPT2BPETokenizer'],
                       help='What type of tokenizer to use.')
649
650
651
652
653
654
655
656
657
658
    group.add_argument('--data-impl', type=str, default='infer',
                       choices=['lazy', 'cached', 'mmap', 'infer'],
                       help='Implementation of indexed datasets.')
    group.add_argument('--reset-position-ids', action='store_true',
                       help='Reset posistion ids after end-of-document token.')
    group.add_argument('--reset-attention-mask', action='store_true',
                       help='Reset self attention maske after '
                       'end-of-document token.')
    group.add_argument('--eod-mask-loss', action='store_true',
                       help='Mask loss for the end of document tokens.')
Mohammad's avatar
Mohammad committed
659

Mohammad's avatar
Mohammad committed
660
661
    return parser

Raul Puri's avatar
Raul Puri committed
662

Mohammad's avatar
Mohammad committed
663
664
def _add_autoresume_args(parser):
    group = parser.add_argument_group(title='autoresume')
Raul Puri's avatar
Raul Puri committed
665

Mohammad's avatar
Mohammad committed
666
667
668
669
670
    group.add_argument('--adlr-autoresume', action='store_true',
                       help='Enable autoresume on adlr cluster.')
    group.add_argument('--adlr-autoresume-interval', type=int, default=1000,
                       help='Intervals over which check for autoresume'
                       'termination signal')
Raul Puri's avatar
Raul Puri committed
671

Mohammad's avatar
Mohammad committed
672
    return parser
Neel Kant's avatar
Neel Kant committed
673
674
675
676
677
678
679


def _add_realm_args(parser):
    group = parser.add_argument_group(title='realm')

    # network size
    group.add_argument('--ict-head-size', type=int, default=None,
680
681
                       help='Size of block embeddings to be used in ICT and '
                       'REALM (paper default: 128)')
Neel Kant's avatar
Neel Kant committed
682
683
684
685
686

    # checkpointing
    group.add_argument('--ict-load', type=str, default=None,
                       help='Directory containing an ICTBertModel checkpoint')
    group.add_argument('--bert-load', type=str, default=None,
687
688
                       help='Directory containing an BertModel checkpoint '
                       '(needed to start ICT and REALM)')
Neel Kant's avatar
Neel Kant committed
689
690
691
692
693

    # data
    group.add_argument('--titles-data-path', type=str, default=None,
                       help='Path to titles dataset used for ICT')
    group.add_argument('--query-in-block-prob', type=float, default=0.1,
694
695
                       help='Probability of keeping query in block for '
                       'ICT dataset')
Neel Kant's avatar
Neel Kant committed
696
    group.add_argument('--use-one-sent-docs', action='store_true',
Neel Kant's avatar
Neel Kant committed
697
698
                       help='Whether to use one sentence documents in ICT')

699
700
701
702
    # training
    group.add_argument('--report-topk-accuracies', nargs='+', default=[],
                       help="Which top-k accuracies to report (e.g. '1 5 20')")

Neel Kant's avatar
Neel Kant committed
703
704
705
    # faiss index
    group.add_argument('--faiss-use-gpu', action='store_true',
                       help='Whether create the FaissMIPSIndex on GPU')
Neel Kant's avatar
Neel Kant committed
706
    group.add_argument('--block-data-path', type=str, default=None,
Neel Kant's avatar
Neel Kant committed
707
                       help='Where to save/load BlockData to/from')
Neel Kant's avatar
Neel Kant committed
708
709
710

    # indexer
    group.add_argument('--indexer-batch-size', type=int, default=128,
711
712
                       help='How large of batches to use when doing indexing '
                       'jobs')
Neel Kant's avatar
Neel Kant committed
713
    group.add_argument('--indexer-log-interval', type=int, default=1000,
714
715
                       help='After how many batches should the indexer '
                       'report progress')
Neel Kant's avatar
Neel Kant committed
716
    return parser
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731


def _add_vit_args(parser):
    group = parser.add_argument_group(title="vit")

    group.add_argument('--num-classes', type=int, default=1000,
                       help='num of classes in vision classificaiton task')
    group.add_argument('--img-dim', type=int, default=224,
                       help='Image size for vision classification task')
    group.add_argument('--num-channels', type=int, default=3,
                       help='Number of channels in input image data')
    group.add_argument('--patch-dim', type=int, default=16,
                       help='patch dimension used in vit')

    return parser