distrib_optimizer.py 22.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""Megatron distributed optimizer."""


import math
20
import torch
21
22

from megatron import get_args
23
24
from megatron import get_timers
from megatron import mpu
25
26
27
28
# >>>
from megatron.model.module import param_is_not_shared
from megatron.mpu.layers import param_is_not_tensor_parallel_duplicate
# <<<
29
30

from .optimizer import MixedPrecisionOptimizer, _zero_grad_group_helper
31

32
33
34
35
# >>>
from .optimizer import get_clippy
from lutil import pax, tp
# <<<
36
37
38
39
40
41
42
43
44
45
46
47

class Shard:
    def __init__(self, start, end):
        self.start = start
        self.end = end
        self.size = end - start
    def normalize(self, start = 0):
        return Shard(start, start + self.size)
    def __str__(self):
        return "%d,%d [%d]" % (self.start, self.end, self.size)


48
class DistributedOptimizer(MixedPrecisionOptimizer):
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

    @classmethod
    def get_model_gbuf_param_shard_map(cls, model, dtype, gbuf_world_shard):

        # Param shard map.
        param_world_index_map = model._grad_buffer_param_index_map[dtype]
        param_shard_map = {}
        for param, param_world_indexes in param_world_index_map.items():

            # Shard range.
            param_world_start, param_world_end = param_world_indexes
            param_local_start = max(
                0,
                param_world_start - gbuf_world_shard.start)
            param_local_end = min(
                gbuf_world_shard.size,
                param_world_end - gbuf_world_shard.start)

            # Add shard, if within range.
            if param_local_end > param_local_start:
                param_local_shard = Shard(param_local_start, param_local_end)
                param_world_shard = param_local_shard.normalize(
                    param_local_start + gbuf_world_shard.start)
                sub_param_start = max(0, gbuf_world_shard.start-param_world_start)
                sub_param_shard = param_local_shard.normalize(sub_param_start)
                param_shard_map[param] = {
                    "gbuf_world" : param_world_shard,
                    "gbuf_local" : param_local_shard,
                    "param" : sub_param_shard,
                }

        return param_shard_map

    @classmethod
    def get_model_gbuf_shard(cls, model, dtype):

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer shard.
        grad_buffer = model._grad_buffers[dtype]
        gbuf_size = grad_buffer.numel
        max_gbuf_shard_size = int(math.ceil(gbuf_size / data_parallel_world_size))

93
        # All world shards. (i.e., across all data parallel ranks)
94
95
96
97
98
99
        gbuf_world_all_shards = []
        for r in range(data_parallel_world_size):
            gbuf_world_start = r * max_gbuf_shard_size
            gbuf_world_end = min(gbuf_size, gbuf_world_start+max_gbuf_shard_size)
            gbuf_world_shard = Shard(gbuf_world_start, gbuf_world_end)
            gbuf_world_all_shards.append(gbuf_world_shard)
100
101

        # Local DP's shards.
102
103
104
        gbuf_world_shard = gbuf_world_all_shards[data_parallel_rank]
        gbuf_local_shard = gbuf_world_shard.normalize()

105
        # Get each param's shards.
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        param_shard_map = cls.get_model_gbuf_param_shard_map(model,
                                                             dtype,
                                                             gbuf_world_shard)

        # Altogether.
        data = {
            "local" : gbuf_local_shard,
            "world" : gbuf_world_shard,
            "world_all" : gbuf_world_all_shards,
            "param_map" : param_shard_map,
            "max_shard_size" : max_gbuf_shard_size,
        }

        return data

    @classmethod
    def get_model_gbuf_shard_map(cls, model):
        return {
            dtype : cls.get_model_gbuf_shard(model, dtype)
            for dtype in model._grad_buffers
        }

    @classmethod
    def get_param_gbuf_map(cls, model_gbuf_shards):
130
131
        '''Create a reverse of the model_gbuf_shards, for referencing in
        opposite direction.'''
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
        param_gbuf_map = {}
        for model_index, model_gbuf_shard_map in enumerate(model_gbuf_shards):
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param, param_shard_map in gbuf_shard_map["param_map"].items():
                    param_gbuf_map[param] = (model_index, dtype)
        return param_gbuf_map

    @classmethod
    def get_optimizer_group_shards(cls, param_groups, model_gbuf_shards):

        num_groups = len(param_groups)

        # Param group map.
        param_group_map = {}
        for group_index, group in enumerate(param_groups):
            for param in group["params"]:
                assert param.requires_grad
                param_group_map[param] = group_index

        # Optimizer group shards.
        group_shards = [ {"size": 0, "param_map": {}} for _ in param_groups ]
        for model_gbuf_shard_map in model_gbuf_shards:
            for dtype, gbuf_shard_map in model_gbuf_shard_map.items():
                for param in gbuf_shard_map["param_map"]:
                    
                    group_index = param_group_map[param]
                    group_shard = group_shards[group_index]
                    param_size = gbuf_shard_map["param_map"][param]["param"].size

                    param_group_start = group_shard["size"]
                    param_group_end = param_group_start + param_size
                    param_group_shard = Shard(param_group_start, param_group_end)

                    group_shard["size"] += param_size
                    group_shard["param_map"][param] = param_group_shard

        # Squeeze zero-size group shards.
        for group_index, group_shard in enumerate(group_shards):
            group_shard["orig_group"] = param_groups[group_index]
        group_shards = [ g for g in group_shards if g["size"] > 0 ]

        return group_shards

    @classmethod
    def allocate_main_param_shards(cls, opt_group_shards):

178
        # Allocator method.
179
180
181
182
183
        allocate_shard = lambda shard_size, dtype : torch.empty(
            (shard_size,),
            dtype = dtype,
            device = torch.cuda.current_device(),
            requires_grad = True)
184

185
        # Allocate each group's param/grad shard.
186
187
188
189
190
191
192
193
194
195
        for group_index, group_shard in enumerate(opt_group_shards):

            group_size = group_shard["size"]
            assert group_size != 0, "temporary check ... remove me."

            # Allocate shard.
            main_param = allocate_shard(group_size, torch.float)
            main_param.grad = allocate_shard(group_size, torch.float)
            mpu.set_tensor_model_parallel_attributes(main_param, True, 0, 1)

196
            # Update group's param.
197
198
            group_shard["orig_group"]["params"] = [ main_param ]

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    # >>>
    @classmethod
    def get_grad_views_for_grad_norm(cls, opt_group_shards, optimizer):

        grad_views = []
        # grad_views_SKIPPED = []
        for group_index, opt_group_shard in enumerate(opt_group_shards):
            opt_grad = optimizer.param_groups[group_index]["params"][0].grad
            for param, shard in opt_group_shard["param_map"].items():
                if param_is_not_shared(param) and \
                   param_is_not_tensor_parallel_duplicate(param):
                    
                    grad_view = opt_grad[shard.start:shard.end]
                    grad_views.append(grad_view)

                # else:
                #     grad_views_SKIPPED.append(opt_grad[shard.start:shard.end])

        # >>>
        # my_rank = torch.distributed.get_rank()
        # for r in range(torch.distributed.get_world_size()):
        #     if r == my_rank:
        #         print("r %d, grad views %s." % (
        #             my_rank,
        #             ", ".join(str(tuple(g.shape)) for g in grad_views),
        #         ))
        #     torch.distributed.barrier()
        # for r in range(torch.distributed.get_world_size()):
        #     if r == my_rank:
        #         print("r %d, SKIPPED %s." % (
        #             my_rank,
        #             ", ".join(str(tuple(g.shape)) for g in grad_views_SKIPPED),
        #         ))
        #     torch.distributed.barrier()
        # exit(0)
        # <<<

        return grad_views
    # <<<
238
239
240
241
242
243
244
245
246
247

    def __init__(self, optimizer, clip_grad, log_num_zeros_in_grad,
                 params_have_main_grad, use_contiguous_buffers_in_local_ddp,
                 bf16, grad_scaler, models):

        super().__init__(
            optimizer, clip_grad, log_num_zeros_in_grad,
            params_have_main_grad, use_contiguous_buffers_in_local_ddp,
            bf16, grad_scaler, models)

248
249
        # Verify that contiguous buffers are being used
        # - Note: this should already be checked in arguments.py
250
        args = get_args()
251
        assert args.use_contiguous_buffers_in_local_ddp
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

        # Model grad buffer shards.
        self.model_gbuf_shards = []
        for model_index, model in enumerate(self.models):
            self.model_gbuf_shards.append(self.get_model_gbuf_shard_map(model))
        self.param_gbuf_map = self.get_param_gbuf_map(self.model_gbuf_shards)

        # Optimizer shards.
        self.opt_group_shards = self.get_optimizer_group_shards(
            self.optimizer.param_groups,
            self.model_gbuf_shards)

        # Allocate main param shards.
        self.allocate_main_param_shards(self.opt_group_shards)

        # Update optimizer groups.
        # - Also, leverage state_dict() and load_state_dict() to
        #   recast preexisting per-param state tensors.
        self.optimizer.param_groups = \
            [ g["orig_group"] for g in self.opt_group_shards ]
        self.optimizer.load_state_dict(self.optimizer.state_dict())

        # Initialize main params.
        self._copy_model_params_to_main_params()

277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
        # >>> numel/nelem per rank >>>
        # for r in range(torch.distributed.get_world_size()):
        #     if r == torch.distributed.get_rank():
        #         for m in self.models:
        #             for b in m._grad_buffers.values():
        #                 print("r %d, %d." % (r, b.data.nelement()))
        #     torch.distributed.barrier()
        # exit(0)
        # <<<

        # Params for grad norm.
        self.grad_views_for_grad_norm = self.get_grad_views_for_grad_norm(
            self.opt_group_shards,
            self.optimizer)


293
294
295
    def get_model_parallel_group(self):
        return None

296
    # >>>
Lawrence McAfee's avatar
Lawrence McAfee committed
297
298
299
300
301
302
303
304
    # @staticmethod
    # def has_nan_debug(tensors):
    #     if isinstance(tensors, torch.Tensor):
    #         tensors = [ tensors ]
    #     assert isinstance(tensors, list)
    #     has_nans = [ (not torch.all(torch.isfinite(t)).item()) for t in tensors ]
    #     has_nan = any(has_nans)
    #     return has_nan
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    # def get_local_model_param_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_param_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             model_param_shard = gbuf_shard_map["param"]
    #             model_param_views.append(
    #                 param.view(-1)[model_param_shard.start:model_param_shard.end])
    #     return model_param_views
    # def get_local_model_grad_views(self):
    #     '''** FOR DEBUGGING. **'''
    #     model_grad_views = []
    #     for group_index, opt_group_shard in enumerate(self.opt_group_shards):
    #         for param, opt_shard in opt_group_shard["param_map"].items():
    #             model_index, dtype = self.param_gbuf_map[param]
    #             gbuf = self.models[model_index]._grad_buffers[dtype].data
    #             gbuf_shard_map = \
    #                 self.model_gbuf_shards[model_index][dtype]["param_map"][param]
    #             gbuf_world_shard = gbuf_shard_map["gbuf_world"]
    #             model_grad_views.append(
    #                 gbuf[gbuf_world_shard.start:gbuf_world_shard.end])
    #     return model_grad_views
    # def get_world_model_params(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p for m in self.models for p in m.parameters() ]
    # def get_world_model_grads(self):
    #     '''** FOR DEBUGGING. **'''
    #     return [ p.main_grad for p in self.get_world_model_params() ]
336
    # <<<
337
338
339
340
341
342
343
344
345
346
347

    def get_main_params(self):
        return [ g["params"][0] for g in self.optimizer.param_groups ]
    def get_main_grads(self):
        return [ p.grad for p in self.get_main_params() ]
    def get_main_param(self, group_index):
        return self.get_main_params()[group_index]
    def get_main_grad(self, group_index):
        return self.get_main_param(group_index).grad

    def state_dict(self):
348
349
350
351
        state_dict = {}
        state_dict['optimizer'] = self.optimizer.state_dict()
        if self.grad_scaler:
            state_dict['grad_scaler'] = self.grad_scaler.state_dict()
352
        state_dict['groups'] = [g['params'] for g in self.optimizer.param_groups]
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        return state_dict


    def load_state_dict(self, state_dict):
        # Optimizer.
        optimizer_key = 'optimizer'
        if optimizer_key not in state_dict:
            optimizer_key = 'optimizer_state_dict'
            print_rank_0('***WARNING*** loading optimizer from '
                         'an old checkpoint ...')
        self.optimizer.load_state_dict(state_dict[optimizer_key])

        # Grad scaler.
        if 'grad_scaler' not in state_dict:
            print_rank_0('***WARNING*** found an old checkpoint, will not '
                         'load grad scaler ...')
        else:
            if self.grad_scaler:
                self.grad_scaler.load_state_dict(state_dict['grad_scaler'])
            else:
                print_rank_0('***WARNING*** fould the grad scaler in the '
                             'checkpoint but it is None in the class. '
                             'Skipping loading grad scaler ...')

        # Copy data for the main params.
378
        current_groups = [ g["params"] for g in self.optimizer.param_groups ]
379
380
        assert "groups" in state_dict, "key 'groups' not in state_dict."
        for current_group, saved_group in zip(current_groups, state_dict["groups"]):
381
382
            for current_param, saved_param in zip(current_group, saved_group):
                current_param.data.copy_(saved_param.data)
383
384
385

    def zero_grad(self, set_to_none=True):

386
        # Collect model params.
387
388
389
390
391
        model_params = []
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                model_params.extend(param_map.keys())

392
        # Distributed optimizer requires contiguous buffer; don't set to None.
Lawrence McAfee's avatar
Lawrence McAfee committed
393
        _zero_grad_group_helper(model_params, set_to_none = False)
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410

    def get_model_grad_buffer_dp_views(self):

        data_parallel_world_size = mpu.get_data_parallel_world_size()

        # Grad buffer views.
        gbuf_view_items = []
        for model_index, model in enumerate(self.models):
            for dtype, gbuf in model._grad_buffers.items():

                assert gbuf.numel_padded % data_parallel_world_size == 0
                shard_size = int(gbuf.numel_padded / data_parallel_world_size)
                gbuf_views = [gbuf.data[(r*shard_size):((r+1)*shard_size)]
                              for r in range(data_parallel_world_size)]
                gbuf_view_items.append((model_index, dtype, gbuf_views))

        return gbuf_view_items
411
412
413

    def get_model_grad_buffer_dp_views_chunked(self, mem_savings_factor):

Lawrence McAfee's avatar
Lawrence McAfee committed
414
        # Iterate grad buffers & chunk.
415
        gbuf_view_items = self.get_model_grad_buffer_dp_views()
416
        chunk_view_items = []
417
418
419
420
421
422
423
        for model_index, dtype, gbuf_views in gbuf_view_items:

            # ** Sanity check. ** (should be unnecessary; see comment above)
            view_numel = gbuf_views[0].nelement()
            for view in gbuf_views:
                assert view.nelement() == view_numel

Lawrence McAfee's avatar
Lawrence McAfee committed
424
            # Compute chunk size (via savings factor).
425
            chunk_numel_min = 131072
426
427
428
429
430
431
            chunk_numel_max = view_numel
            chunk_numel = int(
                mem_savings_factor * chunk_numel_min
                + (1 - mem_savings_factor) * chunk_numel_max
            )

Lawrence McAfee's avatar
Lawrence McAfee committed
432
            # Chunk views.
433
434
435
436
            for start_index in range(0, view_numel, chunk_numel):
                end_index = min(view_numel, start_index + chunk_numel)
                chunk_views = [ t[start_index:end_index] for t in gbuf_views ]
                chunk_view_items.append((model_index, dtype, chunk_views))
437

438
        return chunk_view_items
439

440
    def reduce_model_grads(self, args, timers):
441
442
443
444
        '''Note: this is a different order of reduction, versus the non-
           distributed optimizer, which reduces: 1) all grads, 2) embedding
           grads.
        '''
445

446
447
448
449
450
        # All-reduce embedding grads.
        timers('backward-embedding-all-reduce').start()
        self.allreduce_embedding_grads(args)
        timers('backward-embedding-all-reduce').stop()

451
        # Reduce-scatter setup.
452
453
454
455
        timers('backward-params-all-reduce').start()
        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_world_size = mpu.get_data_parallel_world_size()
        data_parallel_group = mpu.get_data_parallel_group()
456
        mem_savings_factor = args.distrib_opt_comm_mem_savings
457

458
459
460
461
462
463
464
465
        # Scale grad buffers by '1 / data_parallel_world_size'.
        for model in self.models:
            for dtype, gbuf in model._grad_buffers.items():
                gbuf.data /= data_parallel_world_size

        # Reduce scatter all grads.
        gbuf_view_items = \
            self.get_model_grad_buffer_dp_views_chunked(mem_savings_factor)
466
467
468
469
470
471
472
        for model_index, dtype, gbuf_views in gbuf_view_items:
            torch.distributed.reduce_scatter(
                gbuf_views[data_parallel_rank],
                gbuf_views,
                group = data_parallel_group,
            )
        timers('backward-params-all-reduce').stop()
473

474
    def gather_model_params(self, args, timers):
475
476
477
478
479

        timers('backward-params-all-gather').start()

        data_parallel_rank = mpu.get_data_parallel_rank()
        data_parallel_group = mpu.get_data_parallel_group()
480
        mem_savings_factor = args.distrib_opt_comm_mem_savings
481
482
483
484
485
486

        # All-gather updated main params.
        # - All grad buffer views are guaranteed to have the same num elements
        #   across all data parallel ranks, with grad buffer padding that is done
        #   in distributed.py. Thus, all sub-views will have consistent start/end
        #   indexes across data parallel ranks.
487
488
        gbuf_view_items = \
            self.get_model_grad_buffer_dp_views_chunked(mem_savings_factor)
489
        for model_index, dtype, gbuf_views in gbuf_view_items:
490
491
492
493
494
            torch.distributed.all_gather(
                gbuf_views,
                gbuf_views[data_parallel_rank],
                group = data_parallel_group,
            )
495
496
497
498
499
500
501
502
503

        # Each model param now contains its updated values in its
        # '.main_grad' field.
        for model in self.models:
            for dtype, param_map in model._grad_buffer_param_index_map.items():
                for param in param_map:
                    param.detach().copy_(param.main_grad)

        timers('backward-params-all-gather').stop()
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

    def _collect_main_grad_data_for_unscaling(self):
        return [ g.data for g in self.get_main_grads() ]

    def _copy_model_params_to_main_params(self):

        for group_index, group_shard in enumerate(self.opt_group_shards):
            main_param = self.get_main_param(group_index)
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["param"]

                assert main_shard.size == model_shard.size

                # Copy shard data.
                main_view = main_param[main_shard.start:main_shard.end]
                model_view = model_param.view(-1)[model_shard.start:model_shard.end]

                main_view.detach().copy_(model_view)


528
    def _copy_model_grads_to_main_grads(self):
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                # Model shard.
                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Copy from DDP's contiguous buffer to main shard's grad.
                model_grad = self.models[model_index]._grad_buffers[dtype].data
                main_grad = self.get_main_grad(group_index)

                # Copy sub-range within tensor.
                model_view = model_grad[model_shard.start:model_shard.end]
                main_view = main_grad[main_shard.start:main_shard.end]

                main_view.detach().copy_(model_view)


551
    def _copy_main_params_to_model_params(self):
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

        for group_index, group_shard in enumerate(self.opt_group_shards):
            for model_param, main_shard in group_shard["param_map"].items():

                model_index, dtype = self.param_gbuf_map[model_param]
                model_shard = self.model_gbuf_shards \
                    [model_index][dtype]["param_map"][model_param]["gbuf_world"]

                assert main_shard.size == model_shard.size

                # Use DDP's contiguous buffer to temporarily hold params.
                model_param = self.models[model_index]._grad_buffers[dtype].data
                main_param = self.get_main_param(group_index)

                # Copy sub-range within tensor.
                model_view = model_param[model_shard.start:model_shard.end]
                main_view = main_param[main_shard.start:main_shard.end]

                model_view.detach().copy_(main_view)