train.py 15.2 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
11

12
import collections
Myle Ott's avatar
Myle Ott committed
13
import itertools
14
import math
Myle Ott's avatar
Myle Ott committed
15
import os
16
17
import random

18
import torch
Sergey Edunov's avatar
Sergey Edunov committed
19

Myle Ott's avatar
Myle Ott committed
20
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
21
from fairseq.data import iterators
22
23
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
24

Myle Ott's avatar
Myle Ott committed
25

26
def main(args):
Myle Ott's avatar
Myle Ott committed
27
    utils.import_user_module(args)
28

29
30
    if args.max_tokens is None:
        args.max_tokens = 6000
31
32
    print(args)

Myle Ott's avatar
Myle Ott committed
33
34
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
35
36
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
37
38
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
39

Myle Ott's avatar
Myle Ott committed
40
    # Load dataset splits
41
    load_dataset_splits(args, task)
42

Myle Ott's avatar
Myle Ott committed
43
44
45
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
46
    print(model)
47
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
48
49
50
51
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))
52

53
54
55
56
57
58
59
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
60
61
    dummy_batch = task.dataset(args.train_subset).get_dummy_batch(args.max_tokens, max_positions)
    oom_batch = task.dataset(args.train_subset).get_dummy_batch(1, max_positions)
62

63
    # Build trainer
64
    trainer = Trainer(args, task, model, criterion, dummy_batch, oom_batch)
65
66
67
68
69
70
71
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
72
    epoch_itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
73
        dataset=task.dataset(args.train_subset),
74
        max_tokens=args.max_tokens,
75
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
76
77
        max_positions=max_positions,
        ignore_invalid_inputs=True,
78
        required_batch_size_multiple=args.required_batch_size_multiple,
79
80
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
81
        shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
82
        num_workers=args.num_workers,
83
84
85
    )

    # Load the latest checkpoint if one is available
86
    if not load_checkpoint(args, trainer, epoch_itr):
87
        trainer.dummy_train_step([dummy_batch])
88
89
90
91
92
93
94

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
95
    valid_losses = [None]
96
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
97
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
98
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
99
        train(args, trainer, task, epoch_itr)
100

Myle Ott's avatar
Myle Ott committed
101
102
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
103
104

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
105
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
106
107

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
108
109
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
110
111
112
113
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
114
def train(args, trainer, task, epoch_itr):
115
    """Train the model for one epoch."""
116
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
117
118
    update_freq = args.update_freq[epoch_itr.epoch - 1] \
            if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
Myle Ott's avatar
Myle Ott committed
119
120
121
122
123
124

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=args.fix_batches_to_gpus,
        shuffle=(epoch_itr.epoch >= args.curriculum),
    )
125
126
127
128
129
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

130
    extra_meters = collections.defaultdict(lambda: AverageMeter())
131
    valid_subsets = args.valid_subset.split(',')
132
    max_update = args.max_update or math.inf
133
134
135
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
136
137
138
139
140
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
141
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
142
143
144
145
146
147
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
Myle Ott's avatar
Myle Ott committed
148
        progress.log(stats, tag='train', step=stats['num_updates'])
149
150
151
152
153

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

154
        num_updates = trainer.get_num_updates()
155
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
156
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
Myle Ott's avatar
Myle Ott committed
157
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
158
159

        if num_updates >= max_update:
160
161
162
163
164
165
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
166
    progress.print(stats, tag='train', step=stats['num_updates'])
167

Myle Ott's avatar
Myle Ott committed
168
    # reset training meters
169
170
171
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
172
173
174
175
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

176
177
178

def get_training_stats(trainer):
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
179
    stats['loss'] = trainer.get_meter('train_loss')
180
    if trainer.get_meter('train_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
181
182
        nll_loss = trainer.get_meter('train_nll_loss')
        stats['nll_loss'] = nll_loss
183
    else:
Myle Ott's avatar
Myle Ott committed
184
185
186
187
188
189
        nll_loss = trainer.get_meter('train_loss')
    stats['ppl'] = get_perplexity(nll_loss.avg)
    stats['wps'] = trainer.get_meter('wps')
    stats['ups'] = trainer.get_meter('ups')
    stats['wpb'] = trainer.get_meter('wpb')
    stats['bsz'] = trainer.get_meter('bsz')
190
191
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
Myle Ott's avatar
Myle Ott committed
192
193
194
    stats['gnorm'] = trainer.get_meter('gnorm')
    stats['clip'] = trainer.get_meter('clip')
    stats['oom'] = trainer.get_meter('oom')
195
    if trainer.get_meter('loss_scale') is not None:
Myle Ott's avatar
Myle Ott committed
196
        stats['loss_scale'] = trainer.get_meter('loss_scale')
197
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
198
    stats['train_wall'] = trainer.get_meter('train_wall')
199
200
201
    return stats


Myle Ott's avatar
Myle Ott committed
202
def validate(args, trainer, task, epoch_itr, subsets):
203
204
205
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
206
        # Initialize data iterator
207
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
208
            dataset=task.dataset(subset),
209
210
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
211
212
213
214
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
215
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
216
            required_batch_size_multiple=args.required_batch_size_multiple,
Myle Ott's avatar
Myle Ott committed
217
            seed=args.seed,
218
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
219
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
220
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
221
        ).next_epoch_itr(shuffle=False)
222
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
223
            args, itr, epoch_itr.epoch,
224
225
226
227
228
229
230
231
232
233
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
234

235
236
237
238
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
239
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
240
241
                    continue
                extra_meters[k].update(v)
242

243
244
245
246
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
247
        progress.print(stats, tag=subset, step=trainer.get_num_updates())
248

Myle Ott's avatar
Myle Ott committed
249
        valid_losses.append(stats['loss'].avg)
250
    return valid_losses
251
252
253
254


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
255
    stats['loss'] = trainer.get_meter('valid_loss')
256
    if trainer.get_meter('valid_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
257
258
        nll_loss = trainer.get_meter('valid_nll_loss')
        stats['nll_loss'] = nll_loss
259
    else:
Myle Ott's avatar
Myle Ott committed
260
261
        nll_loss = stats['loss']
    stats['ppl'] = get_perplexity(nll_loss.avg)
Myle Ott's avatar
Nits  
Myle Ott committed
262
263
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
Myle Ott's avatar
Myle Ott committed
264
        stats['best_loss'] = min(save_checkpoint.best, stats['loss'].avg)
265
266
267
268
269
270
271
272
273
274
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
275
276
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
277
        return
Myle Ott's avatar
Myle Ott committed
278
279
280
281

    write_timer = StopwatchMeter()
    write_timer.start()

Myle Ott's avatar
Myle Ott committed
282
283
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
284
285
286
287
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
288
289
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
290
291
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
292
293
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
294
295
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
296
297
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
298
299
300
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
301
302
303
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
304
    extra_state = {
Myle Ott's avatar
Myle Ott committed
305
        'train_iterator': epoch_itr.state_dict(),
306
307
        'val_loss': val_loss,
    }
Naman Goyal's avatar
Naman Goyal committed
308
309
    if hasattr(save_checkpoint, 'best'):
        extra_state.update({'best': save_checkpoint.best})
310

311
312
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
313
314
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
315

freewym's avatar
freewym committed
316
317
318
319
        write_timer.stop()
        print('| saved checkpoint {} (epoch {} @ {} updates) (writing took {} seconds)'.format(
            checkpoints[0], epoch, updates, write_timer.sum))

320
321
    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
Myle Ott's avatar
Myle Ott committed
322
323
324
        checkpoints = checkpoint_utils.checkpoint_paths(
            args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt',
        )
325
        for old_chk in checkpoints[args.keep_interval_updates:]:
Myle Ott's avatar
Myle Ott committed
326
327
328
329
330
            if os.path.lexists(old_chk):
                os.remove(old_chk)

    if args.keep_last_epochs > 0:
        # remove old epoch checkpoints; checkpoints are sorted in descending order
Myle Ott's avatar
Myle Ott committed
331
332
333
        checkpoints = checkpoint_utils.checkpoint_paths(
            args.save_dir, pattern=r'checkpoint(\d+)\.pt',
        )
Myle Ott's avatar
Myle Ott committed
334
335
336
        for old_chk in checkpoints[args.keep_last_epochs:]:
            if os.path.lexists(old_chk):
                os.remove(old_chk)
337
338


Myle Ott's avatar
Myle Ott committed
339
340
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
341
342
343
344
345

    # Only rank 0 should attempt to create the required dir
    if args.distributed_rank == 0:
        os.makedirs(args.save_dir, exist_ok=True)

346
347
348
349
    if os.path.isabs(args.restore_file):
        checkpoint_path = args.restore_file
    else:
        checkpoint_path = os.path.join(args.save_dir, args.restore_file)
350
    if os.path.isfile(checkpoint_path):
351
352
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
353
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
354
355
356
357
358
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
359

Myle Ott's avatar
Myle Ott committed
360
361
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
362
            if 'best' in extra_state and not args.reset_optimizer:
363
                save_checkpoint.best = extra_state['best']
364
        return True
365
366
    else:
        print('| no existing checkpoint found {}'.format(checkpoint_path))
367
    return False
368

369

370
371
372
373
374
375
376
377
378
379
380
def load_dataset_splits(args, task):
    task.load_dataset(args.train_subset, combine=True)
    for split in args.valid_subset.split(','):
        for k in itertools.count():
            split_k = split + (str(k) if k > 0 else '')
            try:
                task.load_dataset(split_k, combine=False)
            except FileNotFoundError as e:
                if k > 0:
                    break
                raise e
Sergey Edunov's avatar
Sergey Edunov committed
381

Myle Ott's avatar
Myle Ott committed
382

Myle Ott's avatar
Myle Ott committed
383
384
385
386
def distributed_main(i, args):
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
        args.distributed_rank = i
387
    main(args)
Myle Ott's avatar
Myle Ott committed
388
389


Myle Ott's avatar
Myle Ott committed
390
def cli_main():
Myle Ott's avatar
Myle Ott committed
391
392
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
393

Myle Ott's avatar
Myle Ott committed
394
395
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
396

Myle Ott's avatar
Myle Ott committed
397
398
399
    if args.distributed_init_method is not None:
        # distributed training
        distributed_main(args.device_id, args)
400
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
401
        # fallback for single node with multiple GPUs
402
403
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
404
        args.distributed_rank = None  # set based on device id
Myle Ott's avatar
Myle Ott committed
405
406
        if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
            print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
Myle Ott's avatar
Myle Ott committed
407
408
409
410
411
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
412
    else:
Myle Ott's avatar
Myle Ott committed
413
        # single GPU training
414
        main(args)
Myle Ott's avatar
Myle Ott committed
415
416
417
418


if __name__ == '__main__':
    cli_main()