train.py 13.3 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
import collections
Myle Ott's avatar
Myle Ott committed
10
import itertools
11
12
13
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
14

Myle Ott's avatar
Myle Ott committed
15
from fairseq import data, distributed_utils, options, progress_bar, tasks, utils
16
17
18
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
19

Myle Ott's avatar
Myle Ott committed
20

Myle Ott's avatar
Myle Ott committed
21
def main(args):
22
23
    if args.max_tokens is None:
        args.max_tokens = 6000
24
25
26
27
28
29
30
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
31
32
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
33

Myle Ott's avatar
Myle Ott committed
34
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
35
    load_dataset_splits(task, ['train', 'valid'])
36

Myle Ott's avatar
Myle Ott committed
37
38
39
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
40
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Myle Ott's avatar
Myle Ott committed
41
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
42
43
44

    # Build trainer
    if args.fp16:
45
46
47
        if torch.cuda.get_device_capability(0)[0] < 7:
            print('| WARNING: your device does NOT support faster training with --fp16,'
                  ' please switch to FP32 which is likely to be faster')
Myle Ott's avatar
Myle Ott committed
48
        trainer = FP16Trainer(args, task, model, criterion)
49
50
51
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
Myle Ott's avatar
Myle Ott committed
52
        trainer = Trainer(args, task, model, criterion)
53
54
55
56
57
58
59
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
Myle Ott's avatar
Myle Ott committed
60
61
62
    max_positions = trainer.get_model().max_positions()
    epoch_itr = data.EpochBatchIterator(
        dataset=task.dataset(args.train_subset),
63
        max_tokens=args.max_tokens,
Myle Ott's avatar
Myle Ott committed
64
65
66
67
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
68
69
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
70
        shard_id=args.distributed_rank,
71
72
73
    )

    # Load the latest checkpoint if one is available
74
75
76
77
    if not load_checkpoint(args, trainer, epoch_itr):
        # Send a dummy batch to warm the caching allocator
        dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
        trainer.dummy_train_step(dummy_batch)
78
79
80
81
82
83
84

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
85
    valid_losses = [None]
86
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
87
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
88
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
89
        train(args, trainer, task, epoch_itr)
90

Myle Ott's avatar
Myle Ott committed
91
92
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
93
94

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
95
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
96
97

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
98
99
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
100
101
102
103
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
104
def train(args, trainer, task, epoch_itr):
105
106
    """Train the model for one epoch."""

Myle Ott's avatar
Myle Ott committed
107
108
109
    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr()
    progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, no_progress_bar='simple')
110
111

    # update parameters every N batches
Myle Ott's avatar
Myle Ott committed
112
113
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
114
115
116
117
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
118
    first_valid = args.valid_subset.split(',')[0]
119
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
120
121
    num_batches = len(epoch_itr)
    for i, sample in enumerate(progress, start=epoch_itr.iterations_in_epoch):
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

145
        num_updates = trainer.get_num_updates()
146
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
147
148
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
149
150

        if num_updates >= max_update:
151
152
153
154
155
156
157
158
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
159
    # reset training meters
Sergey Edunov's avatar
Sergey Edunov committed
160
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip', 'gnorm']:
Myle Ott's avatar
Myle Ott committed
161
162
163
164
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
187
    stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
188
189
190
    return stats


Myle Ott's avatar
Myle Ott committed
191
def validate(args, trainer, task, epoch_itr, subsets):
192
193
194
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
195
196
197
        # Initialize data iterator
        itr = data.EpochBatchIterator(
            dataset=task.dataset(subset),
198
199
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
Myle Ott's avatar
Myle Ott committed
200
201
202
203
            max_positions=trainer.get_model().max_positions(),
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
204
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
205
206
            shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)
207
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
208
            args, itr, epoch_itr.epoch,
209
210
211
212
213
214
215
216
217
218
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
219

220
221
222
223
224
225
226
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
                if k in ['loss', 'nll_loss', 'sample_size']:
                    continue
                extra_meters[k].update(v)
227

228
229
230
231
232
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
233

234
235
        valid_losses.append(stats['valid_loss'])
    return valid_losses
236
237
238
239
240
241
242
243


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
244
    else:
245
246
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
247
248
249
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
250
251
252
253
254
255
256
257
258
259
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
260
261
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
262
        return
Myle Ott's avatar
Myle Ott committed
263
264
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
265
266
267
268
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
269
270
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
271
272
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
273
274
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
275
276
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
277
278
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
279
280
281
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
282
283
284
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
285
    extra_state = {
Myle Ott's avatar
Myle Ott committed
286
287
        'best': save_checkpoint.best,
        'train_iterator': epoch_itr.state_dict(),
288
289
290
        'val_loss': val_loss,
    }

291
292
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
293
294
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
295
296
297
298

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
299
300
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
301
302


Myle Ott's avatar
Myle Ott committed
303
304
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
305
306
307
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
308
309
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
310
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
311
312
313
314
315
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
316

Myle Ott's avatar
Myle Ott committed
317
318
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
319
320
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']
321
322
        return True
    return False
323

324

Alexei Baevski's avatar
Alexei Baevski committed
325
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
326
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
327
328
329
330
331
332
333
334
335
336
337
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
338

Myle Ott's avatar
Myle Ott committed
339

Sergey Edunov's avatar
Sergey Edunov committed
340
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
341
342
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
343
344
345

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
346

347
348
349
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
350

351
352
353
        multiprocessing_main(args)
    else:
        main(args)