"integration-tests/vscode:/vscode.git/clone" did not exist on "73a4d65d26801c550e0f1205800c002b147de84e"
train.py 14.9 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
11

12
import collections
Myle Ott's avatar
Myle Ott committed
13
import itertools
14
15
import os
import math
16
17
import random

18
import torch
Sergey Edunov's avatar
Sergey Edunov committed
19

20
from fairseq import distributed_utils, options, progress_bar, tasks, utils
21
from fairseq.data import iterators
22
23
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
24

Myle Ott's avatar
Myle Ott committed
25

Myle Ott's avatar
Myle Ott committed
26
def main(args):
27
28
    if args.max_tokens is None:
        args.max_tokens = 6000
29
30
    print(args)

Myle Ott's avatar
Myle Ott committed
31
32
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
33
34
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
35
36
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
37

Myle Ott's avatar
Myle Ott committed
38
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
39
    load_dataset_splits(task, ['train', 'valid'])
40

Myle Ott's avatar
Myle Ott committed
41
42
43
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
44
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Myle Ott's avatar
Myle Ott committed
45
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
46

47
48
49
50
51
52
53
54
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
55
    oom_batch = task.dataset('train').get_dummy_batch(1, max_positions)
56

57
    # Build trainer
58
    trainer = Trainer(args, task, model, criterion, dummy_batch, oom_batch)
59
60
61
62
63
64
65
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
66
    epoch_itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
67
        dataset=task.dataset(args.train_subset),
68
        max_tokens=args.max_tokens,
69
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
70
71
72
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
73
74
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
75
        shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
76
        num_workers=args.num_workers,
77
78
79
    )

    # Load the latest checkpoint if one is available
80
    if not load_checkpoint(args, trainer, epoch_itr):
81
        trainer.dummy_train_step([dummy_batch])
82
83
84
85
86
87
88

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
89
    valid_losses = [None]
90
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
91
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
92
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
93
        train(args, trainer, task, epoch_itr)
94

Myle Ott's avatar
Myle Ott committed
95
96
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
97
98

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
99
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
100
101

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
102
103
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
104
105
106
107
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
108
def train(args, trainer, task, epoch_itr):
109
110
    """Train the model for one epoch."""

111
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
112
113
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
114
115
116
    else:
        update_freq = args.update_freq[-1]

117
    # Initialize data iterator
Myle Ott's avatar
Myle Ott committed
118
    itr = epoch_itr.next_epoch_itr(fix_batches_to_gpus=args.fix_batches_to_gpus)
119
120
121
122
123
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

124
    extra_meters = collections.defaultdict(lambda: AverageMeter())
125
    first_valid = args.valid_subset.split(',')[0]
126
    max_update = args.max_update or math.inf
127
128
129
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
130
131
132
133
134
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
135
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
136
137
138
139
140
141
142
143
144
145
146
147
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

148
        num_updates = trainer.get_num_updates()
149
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
150
151
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
152
153

        if num_updates >= max_update:
154
155
156
157
158
159
160
161
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
162
    # reset training meters
163
164
165
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
166
167
168
169
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
192
    stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
193
194
195
    return stats


Myle Ott's avatar
Myle Ott committed
196
def validate(args, trainer, task, epoch_itr, subsets):
197
198
199
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
200
        # Initialize data iterator
201
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
202
            dataset=task.dataset(subset),
203
204
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
205
206
207
208
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
209
210
211
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
212
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
213
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
214
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
215
        ).next_epoch_itr(shuffle=False)
216
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
217
            args, itr, epoch_itr.epoch,
218
219
220
221
222
223
224
225
226
227
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
228

229
230
231
232
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
233
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
234
235
                    continue
                extra_meters[k].update(v)
236

237
238
239
240
241
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
242

243
244
        valid_losses.append(stats['valid_loss'])
    return valid_losses
245
246
247
248
249
250
251
252


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
253
    else:
254
255
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
256
257
258
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
259
260
261
262
263
264
265
266
267
268
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
269
270
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
271
        return
Myle Ott's avatar
Myle Ott committed
272
273
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
274
275
276
277
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
278
279
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
280
281
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
282
283
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
284
285
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
286
287
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
288
289
290
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
291
292
293
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
294
    extra_state = {
Myle Ott's avatar
Myle Ott committed
295
        'train_iterator': epoch_itr.state_dict(),
296
297
        'val_loss': val_loss,
    }
Naman Goyal's avatar
Naman Goyal committed
298
299
    if hasattr(save_checkpoint, 'best'):
        extra_state.update({'best': save_checkpoint.best})
300

301
302
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
303
304
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
305
306
307
308

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
309
        for old_chk in checkpoints[args.keep_interval_updates:]:
Myle Ott's avatar
Myle Ott committed
310
311
312
313
314
315
316
317
318
            if os.path.lexists(old_chk):
                os.remove(old_chk)

    if args.keep_last_epochs > 0:
        # remove old epoch checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint\d+\.pt')
        for old_chk in checkpoints[args.keep_last_epochs:]:
            if os.path.lexists(old_chk):
                os.remove(old_chk)
319
320


Myle Ott's avatar
Myle Ott committed
321
322
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
323
324
325
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
326
327
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
328
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
329
330
331
332
333
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
334

Myle Ott's avatar
Myle Ott committed
335
336
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
337
338
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']
339
340
        return True
    return False
341

342

Alexei Baevski's avatar
Alexei Baevski committed
343
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
344
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
345
346
347
348
349
350
351
352
353
354
355
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
356

Myle Ott's avatar
Myle Ott committed
357

Myle Ott's avatar
Myle Ott committed
358
359
360
361
362
363
364
365
366
367
def distributed_main(i, args):
    import socket
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
        args.distributed_rank = i
    args.distributed_rank = distributed_utils.distributed_init(args)
    print('| initialized host {} as rank {}'.format(socket.gethostname(), args.distributed_rank))
    main(args)


Sergey Edunov's avatar
Sergey Edunov committed
368
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
369
370
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
371

Myle Ott's avatar
Myle Ott committed
372
373
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
374

Myle Ott's avatar
Myle Ott committed
375
376
377
    if args.distributed_init_method is not None:
        # distributed training
        distributed_main(args.device_id, args)
378
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
379
        # fallback for single node with multiple GPUs
380
381
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
        args.distributed_rank = None  # set based on device id
        print(
            '''| NOTE: you may get better performance with:

            python -m torch.distributed.launch --nproc_per_node {ngpu} train.py {no_c10d}(...)
            '''.format(
                ngpu=args.distributed_world_size,
                no_c10d=(
                    '--ddp-backend=no_c10d ' if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d'
                    else ''
                ),
            )
        )
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
400
    else:
Myle Ott's avatar
Myle Ott committed
401
        # single GPU training
402
        main(args)