train.py 13.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
11

12
import collections
Myle Ott's avatar
Myle Ott committed
13
import itertools
14
15
16
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
17

18
from fairseq import distributed_utils, options, progress_bar, tasks, utils
19
20
21
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
22

Myle Ott's avatar
Myle Ott committed
23

Myle Ott's avatar
Myle Ott committed
24
def main(args):
25
26
    if args.max_tokens is None:
        args.max_tokens = 6000
27
28
29
30
31
32
33
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
34
35
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
36

Myle Ott's avatar
Myle Ott committed
37
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
38
    load_dataset_splits(task, ['train', 'valid'])
39

Myle Ott's avatar
Myle Ott committed
40
41
42
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
43
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Myle Ott's avatar
Myle Ott committed
44
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
45
46
47

    # Build trainer
    if args.fp16:
48
49
50
        if torch.cuda.get_device_capability(0)[0] < 7:
            print('| WARNING: your device does NOT support faster training with --fp16,'
                  ' please switch to FP32 which is likely to be faster')
Myle Ott's avatar
Myle Ott committed
51
        trainer = FP16Trainer(args, task, model, criterion)
52
53
54
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
Myle Ott's avatar
Myle Ott committed
55
        trainer = Trainer(args, task, model, criterion)
56
57
58
59
60
61
62
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
63
64
65
66
67
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        trainer.get_model().max_positions(),
    )
    epoch_itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
68
        dataset=task.dataset(args.train_subset),
69
        max_tokens=args.max_tokens,
70
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
71
72
73
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
74
75
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
76
        shard_id=args.distributed_rank,
77
78
79
    )

    # Load the latest checkpoint if one is available
80
81
82
83
    if not load_checkpoint(args, trainer, epoch_itr):
        # Send a dummy batch to warm the caching allocator
        dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
        trainer.dummy_train_step(dummy_batch)
84
85
86
87
88
89
90

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
91
    valid_losses = [None]
92
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
93
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
94
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
95
        train(args, trainer, task, epoch_itr)
96

Myle Ott's avatar
Myle Ott committed
97
98
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
99
100

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
101
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
102
103

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
104
105
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
106
107
108
109
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
110
def train(args, trainer, task, epoch_itr):
111
112
    """Train the model for one epoch."""

Myle Ott's avatar
Myle Ott committed
113
114
115
    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr()
    progress = progress_bar.build_progress_bar(args, itr, epoch_itr.epoch, no_progress_bar='simple')
116
117

    # update parameters every N batches
Myle Ott's avatar
Myle Ott committed
118
119
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
120
121
122
123
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
124
    first_valid = args.valid_subset.split(',')[0]
125
    max_update = args.max_update or math.inf
Myle Ott's avatar
Myle Ott committed
126
127
    num_batches = len(epoch_itr)
    for i, sample in enumerate(progress, start=epoch_itr.iterations_in_epoch):
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

151
        num_updates = trainer.get_num_updates()
152
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
153
154
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
155
156

        if num_updates >= max_update:
157
158
159
160
161
162
163
164
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
165
    # reset training meters
Sergey Edunov's avatar
Sergey Edunov committed
166
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip', 'gnorm']:
Myle Ott's avatar
Myle Ott committed
167
168
169
170
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
193
    stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
194
195
196
    return stats


Myle Ott's avatar
Myle Ott committed
197
def validate(args, trainer, task, epoch_itr, subsets):
198
199
200
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
201
        # Initialize data iterator
202
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
203
            dataset=task.dataset(subset),
204
205
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
206
207
208
209
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
210
211
212
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
213
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
214
215
            shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)
216
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
217
            args, itr, epoch_itr.epoch,
218
219
220
221
222
223
224
225
226
227
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
228

229
230
231
232
233
234
235
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
                if k in ['loss', 'nll_loss', 'sample_size']:
                    continue
                extra_meters[k].update(v)
236

237
238
239
240
241
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
242

243
244
        valid_losses.append(stats['valid_loss'])
    return valid_losses
245
246
247
248
249
250
251
252


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
253
    else:
254
255
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
256
257
258
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
259
260
261
262
263
264
265
266
267
268
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
269
270
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
271
        return
Myle Ott's avatar
Myle Ott committed
272
273
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
274
275
276
277
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
278
279
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
280
281
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
282
283
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
284
285
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
286
287
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
288
289
290
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
291
292
293
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
294
    extra_state = {
Myle Ott's avatar
Myle Ott committed
295
296
        'best': save_checkpoint.best,
        'train_iterator': epoch_itr.state_dict(),
297
298
299
        'val_loss': val_loss,
    }

300
301
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
302
303
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
304
305
306
307

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
308
309
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
310
311


Myle Ott's avatar
Myle Ott committed
312
313
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
314
315
316
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
317
318
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
319
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
320
321
322
323
324
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
325

Myle Ott's avatar
Myle Ott committed
326
327
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
328
329
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']
330
331
        return True
    return False
332

333

Alexei Baevski's avatar
Alexei Baevski committed
334
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
335
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
336
337
338
339
340
341
342
343
344
345
346
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
347

Myle Ott's avatar
Myle Ott committed
348

Sergey Edunov's avatar
Sergey Edunov committed
349
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
350
351
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
352
353
354

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
355

356
357
358
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
359

360
361
362
        multiprocessing_main(args)
    else:
        main(args)