train.py 11.8 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
8
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.

9
10
11
12
import collections
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
13

14
15
16
17
from fairseq import criterions, data, models, options, progress_bar
from fairseq.fp16_trainer import FP16Trainer
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
18

Myle Ott's avatar
Myle Ott committed
19

Myle Ott's avatar
Myle Ott committed
20
def main(args):
21
22
23
24

    if args.max_tokens is None:
        args.max_tokens = 6000

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

    # Load dataset
    splits = ['train', 'valid']
    dataset = load_dataset(args, splits)
    print('| [{}] dictionary: {} types'.format(dataset.src, len(dataset.src_dict)))
    print('| [{}] dictionary: {} types'.format(dataset.dst, len(dataset.dst_dict)))
    for split in splits:
        print('| {} {} {} examples'.format(args.data, split, len(dataset.splits[split])))

    # Build model and criterion
    model = models.build_model(args, dataset.src_dict, dataset.dst_dict)
    criterion = criterions.build_criterion(args, dataset.src_dict, dataset.dst_dict)
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
    print('| num. model params: {}'.format(sum(p.data.numel() for p in model.parameters())))

    # Build trainer
    if args.fp16:
        trainer = FP16Trainer(args, model, criterion)
    else:
        if torch.cuda.get_device_capability(0)[0] >= 7:
            print('| NOTICE: your device may support faster training with --fp16')
        trainer = Trainer(args, model, criterion)
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
    train_dataloader = dataset.train_dataloader_generator(
        args.train_subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences,
        max_positions=(
            min(args.max_source_positions, trainer.get_model().max_encoder_positions()),
            min(args.max_target_positions, trainer.get_model().max_decoder_positions())
        ),
        seed=args.seed,
        sample_without_replacement=args.sample_without_replacement,
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )

    # Load the latest checkpoint if one is available
    epoch = load_checkpoint(args, trainer, train_dataloader)

    # Send a dummy batch to warm the caching allocator
    dummy_batch = data.get_dummy_batch(args.max_tokens, dataset.src_dict, dataset.dst_dict)
    trainer.dummy_train_step(dummy_batch)

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
    while lr > args.min_lr and epoch <= max_epoch and trainer.get_num_updates() < max_update:
        # train for one epoch
        train(args, trainer, next(train_dataloader), epoch)

        # evaluate on validate set
        first_val_loss = None
        if epoch % args.validate_interval == 0:
            for k, subset in enumerate(args.valid_subset.split(',')):
                val_loss = validate(args, trainer, dataset, subset, epoch)
                if k == 0:
                    first_val_loss = val_loss

        # only use first validation loss to update the learning rate
        lr = trainer.lr_step(epoch, first_val_loss)

        # save checkpoint
        if not args.no_save and epoch % args.save_interval == 0:
            save_checkpoint(trainer, args, epoch, first_val_loss)

        epoch += 1
    train_meter.stop()

    print('| done training in {:.1f} seconds'.format(train_meter.sum))


def load_dataset(args, splits):
    if data.has_binary_files(args.data, splits):
        dataset = data.load_dataset(args.data, splits, args.source_lang, args.target_lang)
    else:
        dataset = data.load_raw_text_dataset(args.data, splits, args.source_lang, args.target_lang)
    if args.source_lang is None or args.target_lang is None:
        # record inferred languages in args, so that it's saved in checkpoints
        args.source_lang, args.target_lang = dataset.src, dataset.dst
    return dataset


def train(args, trainer, itr, epoch):
    """Train the model for one epoch."""

    # Set seed based on args.seed and the epoch number so that we get
    # reproducible results when resuming from checkpoints
    seed = args.seed + epoch
    torch.manual_seed(seed)

    # reset training meters
    for k in ['train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'clip']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    # update parameters every N batches
    if epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch - 1]
    else:
        update_freq = args.update_freq[-1]

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    max_update = args.max_update or math.inf
    num_batches = len(itr)
    progress = progress_bar.build_progress_bar(args, itr, epoch, no_progress_bar='simple')
    for i, sample in enumerate(progress):
        if i < num_batches - 1 and (i + 1) % update_freq > 0:
            # buffer updates according to --update-freq
            trainer.train_step(sample, update_params=False)
            continue
        else:
            log_output = trainer.train_step(sample, update_params=True)

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

        if trainer.get_num_updates() >= max_update:
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)


def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
    return stats


def validate(args, trainer, dataset, subset, epoch):
    """Evaluate the model on the validation set and return the average loss."""

    # Initialize dataloader
    max_positions_valid = (
        trainer.get_model().max_encoder_positions(),
        trainer.get_model().max_decoder_positions(),
    )
    itr = dataset.eval_dataloader(
        subset,
        max_tokens=args.max_tokens,
        max_sentences=args.max_sentences_valid,
        max_positions=max_positions_valid,
        skip_invalid_size_inputs_valid_test=args.skip_invalid_size_inputs_valid_test,
        descending=True,  # largest batch first to warm the caching allocator
        shard_id=args.distributed_rank,
        num_shards=args.distributed_world_size,
    )
    progress = progress_bar.build_progress_bar(
        args, itr, epoch,
        prefix='valid on \'{}\' subset'.format(subset),
        no_progress_bar='simple'
    )

    # reset validation loss meters
    for k in ['valid_loss', 'valid_nll_loss']:
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

    extra_meters = collections.defaultdict(lambda: AverageMeter())
    for sample in progress:
        log_output = trainer.valid_step(sample)

        # log mid-validation stats
        stats = get_valid_stats(trainer)
        for k, v in log_output.items():
            if k in ['loss', 'nll_loss', 'sample_size']:
                continue
            extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

    # log validation stats
    stats = get_valid_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

    return stats['valid_loss']


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
263
    else:
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


def save_checkpoint(trainer, args, epoch, val_loss=None):
    extra_state = {
        'epoch': epoch,
        'val_loss': val_loss,
280
        'wall_time': trainer.get_meter('wall').elapsed_time,
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
    }

    if not args.no_epoch_checkpoints:
        epoch_filename = os.path.join(args.save_dir, 'checkpoint{}.pt'.format(epoch))
        trainer.save_checkpoint(epoch_filename, extra_state)

    assert val_loss is not None
    if not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best:
        save_checkpoint.best = val_loss
        best_filename = os.path.join(args.save_dir, 'checkpoint_best.pt')
        trainer.save_checkpoint(best_filename, extra_state)

    last_filename = os.path.join(args.save_dir, 'checkpoint_last.pt')
    trainer.save_checkpoint(last_filename, extra_state)


def load_checkpoint(args, trainer, train_dataloader):
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    epoch = 1
    if os.path.isfile(checkpoint_path):
        extra_state = trainer.load_checkpoint(checkpoint_path)
        if extra_state is not None:
            epoch = extra_state['epoch']
            print('| loaded checkpoint {} (epoch {})'.format(checkpoint_path, epoch))
            trainer.lr_step(epoch)
            for i in range(epoch):
                _ = next(train_dataloader)
            epoch += 1
310
            trainer.get_meter('wall').reset(init=extra_state.get('wall_time', 0))
311
    return epoch
Sergey Edunov's avatar
Sergey Edunov committed
312

Myle Ott's avatar
Myle Ott committed
313

Sergey Edunov's avatar
Sergey Edunov committed
314
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
315
316
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
317
318
319
320
321
322
323
324
325

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
        multiprocessing_main(args)
    else:
        main(args)