train.py 15 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
11

12
import collections
Myle Ott's avatar
Myle Ott committed
13
import itertools
14
15
import os
import math
16
17
import random

18
import torch
Sergey Edunov's avatar
Sergey Edunov committed
19

20
from fairseq import distributed_utils, options, progress_bar, tasks, utils
21
from fairseq.data import iterators
22
23
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
24
from fairseq.utils import import_user_module
Sergey Edunov's avatar
Sergey Edunov committed
25

Myle Ott's avatar
Myle Ott committed
26

Myle Ott's avatar
Myle Ott committed
27
def main(args):
28
29
    import_user_module(args)

30
31
    if args.max_tokens is None:
        args.max_tokens = 6000
32
33
    print(args)

Myle Ott's avatar
Myle Ott committed
34
35
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
36
37
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
38
39
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
40

Myle Ott's avatar
Myle Ott committed
41
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
42
    load_dataset_splits(task, ['train', 'valid'])
43

Myle Ott's avatar
Myle Ott committed
44
45
46
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
47
    print(model)
48
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
49
50
51
52
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))
53

54
55
56
57
58
59
60
61
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)
62
    oom_batch = task.dataset('train').get_dummy_batch(1, max_positions)
63

64
    # Build trainer
65
    trainer = Trainer(args, task, model, criterion, dummy_batch, oom_batch)
66
67
68
69
70
71
72
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
73
    epoch_itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
74
        dataset=task.dataset(args.train_subset),
75
        max_tokens=args.max_tokens,
76
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
77
78
79
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
80
81
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
82
        shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
83
        num_workers=args.num_workers,
84
85
86
    )

    # Load the latest checkpoint if one is available
87
    if not load_checkpoint(args, trainer, epoch_itr):
88
        trainer.dummy_train_step([dummy_batch])
89
90
91
92
93
94
95

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
96
    valid_losses = [None]
97
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
98
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
99
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
100
        train(args, trainer, task, epoch_itr)
101

Myle Ott's avatar
Myle Ott committed
102
103
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
104
105

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
106
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
107
108

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
109
110
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
111
112
113
114
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
115
def train(args, trainer, task, epoch_itr):
116
117
    """Train the model for one epoch."""

118
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
119
120
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
121
122
123
    else:
        update_freq = args.update_freq[-1]

124
    # Initialize data iterator
Myle Ott's avatar
Myle Ott committed
125
    itr = epoch_itr.next_epoch_itr(fix_batches_to_gpus=args.fix_batches_to_gpus)
126
127
128
129
130
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

131
    extra_meters = collections.defaultdict(lambda: AverageMeter())
132
    first_valid = args.valid_subset.split(',')[0]
133
    max_update = args.max_update or math.inf
134
135
136
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
137
138
139
140
141
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
142
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
143
144
145
146
147
148
149
150
151
152
153
154
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

155
        num_updates = trainer.get_num_updates()
156
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
157
158
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
159
160

        if num_updates >= max_update:
161
162
163
164
165
166
167
168
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
169
    # reset training meters
170
171
172
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
173
174
175
176
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
199
    stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
200
201
202
    return stats


Myle Ott's avatar
Myle Ott committed
203
def validate(args, trainer, task, epoch_itr, subsets):
204
205
206
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
207
        # Initialize data iterator
208
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
209
            dataset=task.dataset(subset),
210
211
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
212
213
214
215
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
216
217
218
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
219
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
220
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
221
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
222
        ).next_epoch_itr(shuffle=False)
223
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
224
            args, itr, epoch_itr.epoch,
225
226
227
228
229
230
231
232
233
234
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
235

236
237
238
239
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
240
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
241
242
                    continue
                extra_meters[k].update(v)
243

244
245
246
247
248
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
249

250
251
        valid_losses.append(stats['valid_loss'])
    return valid_losses
252
253
254
255
256
257
258
259


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
260
    else:
261
262
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
263
264
265
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
266
267
268
269
270
271
272
273
274
275
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
276
277
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
278
        return
Myle Ott's avatar
Myle Ott committed
279
280
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
281
282
283
284
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
285
286
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
287
288
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
289
290
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
291
292
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
293
294
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
295
296
297
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
298
299
300
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
301
    extra_state = {
Myle Ott's avatar
Myle Ott committed
302
        'train_iterator': epoch_itr.state_dict(),
303
304
        'val_loss': val_loss,
    }
Naman Goyal's avatar
Naman Goyal committed
305
306
    if hasattr(save_checkpoint, 'best'):
        extra_state.update({'best': save_checkpoint.best})
307

308
309
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
310
311
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
312
313
314
315

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
316
        for old_chk in checkpoints[args.keep_interval_updates:]:
Myle Ott's avatar
Myle Ott committed
317
318
319
320
321
322
323
324
325
            if os.path.lexists(old_chk):
                os.remove(old_chk)

    if args.keep_last_epochs > 0:
        # remove old epoch checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint\d+\.pt')
        for old_chk in checkpoints[args.keep_last_epochs:]:
            if os.path.lexists(old_chk):
                os.remove(old_chk)
326
327


Myle Ott's avatar
Myle Ott committed
328
329
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
330
331
332
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
333
334
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
335
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
336
337
338
339
340
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
341

Myle Ott's avatar
Myle Ott committed
342
343
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
344
345
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']
346
347
        return True
    return False
348

349

Alexei Baevski's avatar
Alexei Baevski committed
350
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
351
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
352
353
354
355
356
357
358
359
360
361
362
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
363

Myle Ott's avatar
Myle Ott committed
364

Myle Ott's avatar
Myle Ott committed
365
366
367
368
369
370
371
372
373
374
def distributed_main(i, args):
    import socket
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
        args.distributed_rank = i
    args.distributed_rank = distributed_utils.distributed_init(args)
    print('| initialized host {} as rank {}'.format(socket.gethostname(), args.distributed_rank))
    main(args)


Sergey Edunov's avatar
Sergey Edunov committed
375
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
376
377
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
378

Myle Ott's avatar
Myle Ott committed
379
380
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
381

Myle Ott's avatar
Myle Ott committed
382
383
384
    if args.distributed_init_method is not None:
        # distributed training
        distributed_main(args.device_id, args)
385
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
386
        # fallback for single node with multiple GPUs
387
388
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
        args.distributed_rank = None  # set based on device id
        print(
            '''| NOTE: you may get better performance with:

            python -m torch.distributed.launch --nproc_per_node {ngpu} train.py {no_c10d}(...)
            '''.format(
                ngpu=args.distributed_world_size,
                no_c10d=(
                    '--ddp-backend=no_c10d ' if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d'
                    else ''
                ),
            )
        )
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
407
    else:
Myle Ott's avatar
Myle Ott committed
408
        # single GPU training
409
        main(args)