train.py 13.2 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
Sergey Edunov's avatar
Sergey Edunov committed
2
3
4
5
6
7
# Copyright (c) 2017-present, Facebook, Inc.
# All rights reserved.
#
# This source code is licensed under the license found in the LICENSE file in
# the root directory of this source tree. An additional grant of patent rights
# can be found in the PATENTS file in the same directory.
Myle Ott's avatar
Myle Ott committed
8
9
10
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
11

12
import collections
Myle Ott's avatar
Myle Ott committed
13
import itertools
14
15
16
import os
import math
import torch
Sergey Edunov's avatar
Sergey Edunov committed
17

18
from fairseq import distributed_utils, options, progress_bar, tasks, utils
19
from fairseq.data import iterators
20
21
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
22

Myle Ott's avatar
Myle Ott committed
23

Myle Ott's avatar
Myle Ott committed
24
def main(args):
25
26
    if args.max_tokens is None:
        args.max_tokens = 6000
27
28
29
30
31
32
33
    print(args)

    if not torch.cuda.is_available():
        raise NotImplementedError('Training on CPU is not supported')
    torch.cuda.set_device(args.device_id)
    torch.manual_seed(args.seed)

Myle Ott's avatar
Myle Ott committed
34
35
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
36

Myle Ott's avatar
Myle Ott committed
37
    # Load dataset splits
Alexei Baevski's avatar
Alexei Baevski committed
38
    load_dataset_splits(task, ['train', 'valid'])
39

Myle Ott's avatar
Myle Ott committed
40
41
42
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
43
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
Myle Ott's avatar
Myle Ott committed
44
    print('| num. model params: {}'.format(sum(p.numel() for p in model.parameters())))
45

46
47
48
49
50
51
52
53
54
    # Make a dummy batch to (i) warm the caching allocator and (ii) as a
    # placeholder DistributedDataParallel when there's an uneven number of
    # batches per worker.
    max_positions = utils.resolve_max_positions(
        task.max_positions(),
        model.max_positions(),
    )
    dummy_batch = task.dataset('train').get_dummy_batch(args.max_tokens, max_positions)

55
    # Build trainer
56
    trainer = Trainer(args, task, model, criterion, dummy_batch)
57
58
59
60
61
62
63
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

    # Initialize dataloader
64
    epoch_itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
65
        dataset=task.dataset(args.train_subset),
66
        max_tokens=args.max_tokens,
67
        max_sentences=args.max_sentences,
Myle Ott's avatar
Myle Ott committed
68
69
70
        max_positions=max_positions,
        ignore_invalid_inputs=True,
        required_batch_size_multiple=8,
71
72
        seed=args.seed,
        num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
73
        shard_id=args.distributed_rank,
74
75
76
    )

    # Load the latest checkpoint if one is available
77
    if not load_checkpoint(args, trainer, epoch_itr):
78
        trainer.dummy_train_step([dummy_batch])
79
80
81
82
83
84
85

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
Myle Ott's avatar
Myle Ott committed
86
    valid_losses = [None]
87
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
88
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
89
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
90
        train(args, trainer, task, epoch_itr)
91

Myle Ott's avatar
Myle Ott committed
92
93
        if epoch_itr.epoch % args.validate_interval == 0:
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
94
95

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
96
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
97
98

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
99
100
        if epoch_itr.epoch % args.save_interval == 0:
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
101
102
103
104
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
105
def train(args, trainer, task, epoch_itr):
106
107
    """Train the model for one epoch."""

108
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
109
110
    if epoch_itr.epoch <= len(args.update_freq):
        update_freq = args.update_freq[epoch_itr.epoch - 1]
111
112
113
    else:
        update_freq = args.update_freq[-1]

114
    # Initialize data iterator
Myle Ott's avatar
Myle Ott committed
115
    itr = epoch_itr.next_epoch_itr(fix_batches_to_gpus=args.fix_batches_to_gpus)
116
117
118
119
120
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

121
    extra_meters = collections.defaultdict(lambda: AverageMeter())
122
    first_valid = args.valid_subset.split(',')[0]
123
    max_update = args.max_update or math.inf
124
125
126
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
127
128
129
130
131
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
132
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
133
134
135
136
137
138
139
140
141
142
143
144
                continue  # these are already logged above
            if 'loss' in k:
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
        progress.log(stats)

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

145
        num_updates = trainer.get_num_updates()
146
        if args.save_interval_updates > 0 and num_updates % args.save_interval_updates == 0 and num_updates > 0:
Myle Ott's avatar
Myle Ott committed
147
148
            valid_losses = validate(args, trainer, task, epoch_itr, [first_valid])
            save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
149
150

        if num_updates >= max_update:
151
152
153
154
155
156
157
158
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
    progress.print(stats)

Myle Ott's avatar
Myle Ott committed
159
    # reset training meters
160
161
162
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
163
164
165
166
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188

def get_training_stats(trainer):
    stats = collections.OrderedDict()
    stats['loss'] = '{:.3f}'.format(trainer.get_meter('train_loss').avg)
    if trainer.get_meter('train_nll_loss').count > 0:
        nll_loss = trainer.get_meter('train_nll_loss').avg
        stats['nll_loss'] = '{:.3f}'.format(nll_loss)
    else:
        nll_loss = trainer.get_meter('train_loss').avg
    stats['ppl'] = get_perplexity(nll_loss)
    stats['wps'] = round(trainer.get_meter('wps').avg)
    stats['ups'] = '{:.1f}'.format(trainer.get_meter('ups').avg)
    stats['wpb'] = round(trainer.get_meter('wpb').avg)
    stats['bsz'] = round(trainer.get_meter('bsz').avg)
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
    stats['gnorm'] = '{:.3f}'.format(trainer.get_meter('gnorm').avg)
    stats['clip'] = '{:.0%}'.format(trainer.get_meter('clip').avg)
    stats['oom'] = trainer.get_meter('oom').avg
    if trainer.get_meter('loss_scale') is not None:
        stats['loss_scale'] = '{:.3f}'.format(trainer.get_meter('loss_scale').avg)
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
189
    stats['train_wall'] = round(trainer.get_meter('train_wall').sum)
190
191
192
    return stats


Myle Ott's avatar
Myle Ott committed
193
def validate(args, trainer, task, epoch_itr, subsets):
194
195
196
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
197
        # Initialize data iterator
198
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
199
            dataset=task.dataset(subset),
200
201
            max_tokens=args.max_tokens,
            max_sentences=args.max_sentences_valid,
202
203
204
205
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
206
207
208
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
            required_batch_size_multiple=8,
            seed=args.seed,
209
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
210
211
            shard_id=args.distributed_rank,
        ).next_epoch_itr(shuffle=False)
212
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
213
            args, itr, epoch_itr.epoch,
214
215
216
217
218
219
220
221
222
223
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
224

225
226
227
228
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
229
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
230
231
                    continue
                extra_meters[k].update(v)
232

233
234
235
236
237
        # log validation stats
        stats = get_valid_stats(trainer)
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
        progress.print(stats)
238

239
240
        valid_losses.append(stats['valid_loss'])
    return valid_losses
241
242
243
244
245
246
247
248


def get_valid_stats(trainer):
    stats = collections.OrderedDict()
    stats['valid_loss'] = trainer.get_meter('valid_loss').avg
    if trainer.get_meter('valid_nll_loss').count > 0:
        nll_loss = trainer.get_meter('valid_nll_loss').avg
        stats['valid_nll_loss'] = nll_loss
249
    else:
250
251
        nll_loss = trainer.get_meter('valid_loss').avg
    stats['valid_ppl'] = get_perplexity(nll_loss)
Myle Ott's avatar
Nits  
Myle Ott committed
252
253
254
    stats['num_updates'] = trainer.get_num_updates()
    if hasattr(save_checkpoint, 'best'):
        stats['best'] = min(save_checkpoint.best, stats['valid_loss'])
255
256
257
258
259
260
261
262
263
264
    return stats


def get_perplexity(loss):
    try:
        return '{:.2f}'.format(math.pow(2, loss))
    except OverflowError:
        return float('inf')


Myle Ott's avatar
Myle Ott committed
265
266
def save_checkpoint(args, trainer, epoch_itr, val_loss):
    if args.no_save or not distributed_utils.is_master(args):
267
        return
Myle Ott's avatar
Myle Ott committed
268
269
    epoch = epoch_itr.epoch
    end_of_epoch = epoch_itr.end_of_epoch()
270
271
272
273
    updates = trainer.get_num_updates()

    checkpoint_conds = collections.OrderedDict()
    checkpoint_conds['checkpoint{}.pt'.format(epoch)] = (
Alexei Baevski's avatar
Alexei Baevski committed
274
275
            end_of_epoch and not args.no_epoch_checkpoints and
            epoch % args.save_interval == 0
276
277
    )
    checkpoint_conds['checkpoint_{}_{}.pt'.format(epoch, updates)] = (
Alexei Baevski's avatar
Alexei Baevski committed
278
279
            not end_of_epoch and args.save_interval_updates > 0 and
            updates % args.save_interval_updates == 0
280
281
    )
    checkpoint_conds['checkpoint_best.pt'] = (
Alexei Baevski's avatar
Alexei Baevski committed
282
283
            val_loss is not None and
            (not hasattr(save_checkpoint, 'best') or val_loss < save_checkpoint.best)
284
285
286
    )
    checkpoint_conds['checkpoint_last.pt'] = True  # keep this last so that it's a symlink

Myle Ott's avatar
Myle Ott committed
287
288
289
    prev_best = getattr(save_checkpoint, 'best', val_loss)
    if val_loss is not None:
        save_checkpoint.best = min(val_loss, prev_best)
290
    extra_state = {
Myle Ott's avatar
Myle Ott committed
291
        'train_iterator': epoch_itr.state_dict(),
292
293
        'val_loss': val_loss,
    }
Naman Goyal's avatar
Naman Goyal committed
294
295
    if hasattr(save_checkpoint, 'best'):
        extra_state.update({'best': save_checkpoint.best})
296

297
298
    checkpoints = [os.path.join(args.save_dir, fn) for fn, cond in checkpoint_conds.items() if cond]
    if len(checkpoints) > 0:
299
300
        for cp in checkpoints:
            trainer.save_checkpoint(cp, extra_state)
301
302
303
304

    if not end_of_epoch and args.keep_interval_updates > 0:
        # remove old checkpoints; checkpoints are sorted in descending order
        checkpoints = utils.checkpoint_paths(args.save_dir, pattern=r'checkpoint_\d+_(\d+)\.pt')
305
306
        for old_chk in checkpoints[args.keep_interval_updates:]:
            os.remove(old_chk)
307
308


Myle Ott's avatar
Myle Ott committed
309
310
def load_checkpoint(args, trainer, epoch_itr):
    """Load a checkpoint and replay dataloader to match."""
311
312
313
    os.makedirs(args.save_dir, exist_ok=True)
    checkpoint_path = os.path.join(args.save_dir, args.restore_file)
    if os.path.isfile(checkpoint_path):
314
315
        extra_state = trainer.load_checkpoint(checkpoint_path, args.reset_optimizer, args.reset_lr_scheduler,
                                              eval(args.optimizer_overrides))
316
        if extra_state is not None:
Myle Ott's avatar
Myle Ott committed
317
318
319
320
321
            # replay train iterator to match checkpoint
            epoch_itr.load_state_dict(extra_state['train_iterator'])

            print('| loaded checkpoint {} (epoch {} @ {} updates)'.format(
                checkpoint_path, epoch_itr.epoch, trainer.get_num_updates()))
alexeib's avatar
alexeib committed
322

Myle Ott's avatar
Myle Ott committed
323
324
            trainer.lr_step(epoch_itr.epoch)
            trainer.lr_step_update(trainer.get_num_updates())
325
326
            if 'best' in extra_state:
                save_checkpoint.best = extra_state['best']
327
328
        return True
    return False
329

330

Alexei Baevski's avatar
Alexei Baevski committed
331
def load_dataset_splits(task, splits):
Myle Ott's avatar
Myle Ott committed
332
    for split in splits:
Alexei Baevski's avatar
Alexei Baevski committed
333
334
335
336
337
338
339
340
341
342
343
        if split == 'train':
            task.load_dataset(split, combine=True)
        else:
            for k in itertools.count():
                split_k = split + (str(k) if k > 0 else '')
                try:
                    task.load_dataset(split_k, combine=False)
                except FileNotFoundError as e:
                    if k > 0:
                        break
                    raise e
Sergey Edunov's avatar
Sergey Edunov committed
344

Myle Ott's avatar
Myle Ott committed
345

Sergey Edunov's avatar
Sergey Edunov committed
346
if __name__ == '__main__':
Myle Ott's avatar
Myle Ott committed
347
348
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
349
350
351

    if args.distributed_port > 0 or args.distributed_init_method is not None:
        from distributed_train import main as distributed_main
352

353
354
355
        distributed_main(args)
    elif args.distributed_world_size > 1:
        from multiprocessing_train import main as multiprocessing_main
356

357
358
359
        multiprocessing_main(args)
    else:
        main(args)