train.py 12.5 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
2
# Copyright (c) Facebook, Inc. and its affiliates.
Sergey Edunov's avatar
Sergey Edunov committed
3
#
4
5
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
6
7
8
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
9

10
11
import collections
import math
12
13
import random

14
import numpy as np
15
import torch
Sergey Edunov's avatar
Sergey Edunov committed
16

Myle Ott's avatar
Myle Ott committed
17
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
18
from fairseq.data import iterators
19
20
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
21

22
23
fb_pathmgr_registerd = False

Myle Ott's avatar
Myle Ott committed
24

25
def main(args, init_distributed=False):
Myle Ott's avatar
Myle Ott committed
26
    utils.import_user_module(args)
27

28
29
30
31
32
33
34
35
36
    try:
        from fairseq.fb_pathmgr import fb_pathmgr
        global fb_pathmgr_registerd
        if not fb_pathmgr_registerd:
            fb_pathmgr.register()
            fb_pathmgr_registerd = True
    except (ModuleNotFoundError, ImportError):
        pass

37
38
    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'
39

40
    # Initialize CUDA and distributed training
Myle Ott's avatar
Myle Ott committed
41
42
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
43
    np.random.seed(args.seed)
44
    torch.manual_seed(args.seed)
45
46
47
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

48
49
50
    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

51
52
    # Print args
    print(args)
53

Myle Ott's avatar
Myle Ott committed
54
55
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
56

Myle Ott's avatar
Myle Ott committed
57
    # Load valid dataset (we load training data below, based on the latest checkpoint)
Naman Goyal's avatar
Naman Goyal committed
58
    for valid_sub_split in args.valid_subset.split(','):
59
        task.load_dataset(valid_sub_split, combine=False, epoch=0)
60

Myle Ott's avatar
Myle Ott committed
61
62
63
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
64
    print(model)
65
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
66
67
68
69
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))
70
71

    # Build trainer
Myle Ott's avatar
Myle Ott committed
72
    trainer = Trainer(args, task, model, criterion)
73
74
75
76
77
78
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

Myle Ott's avatar
Myle Ott committed
79
80
81
    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
82
83
84
85
86
87
88

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
89
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
90
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
91
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
92
        train(args, trainer, task, epoch_itr)
93

Myle Ott's avatar
Myle Ott committed
94
        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
Myle Ott's avatar
Myle Ott committed
95
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
Myle Ott's avatar
Myle Ott committed
96
97
        else:
            valid_losses = [None]
98
99

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
100
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
101
102

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
103
        if epoch_itr.epoch % args.save_interval == 0:
Myle Ott's avatar
Myle Ott committed
104
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
Naman Goyal's avatar
Naman Goyal committed
105

106
107
108
        reload_dataset = ':' in getattr(args, 'data', '')
        # sharded data: get train iterator for next epoch
        epoch_itr = trainer.get_train_iterator(epoch_itr.epoch, load_dataset=reload_dataset)
109
110
111
112
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
113
def train(args, trainer, task, epoch_itr):
114
    """Train the model for one epoch."""
115
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
116
    update_freq = args.update_freq[epoch_itr.epoch - 1] \
Myle Ott's avatar
Myle Ott committed
117
        if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
Myle Ott's avatar
Myle Ott committed
118
119
120
121
122
123

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=args.fix_batches_to_gpus,
        shuffle=(epoch_itr.epoch >= args.curriculum),
    )
124
125
126
127
128
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

129
    extra_meters = collections.defaultdict(lambda: AverageMeter())
130
    valid_subsets = args.valid_subset.split(',')
131
    max_update = args.max_update or math.inf
132
133
134
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
135
136
137
138
139
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
140
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
141
                continue  # these are already logged above
142
            if 'loss' in k or k == 'accuracy':
143
144
145
146
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
Myle Ott's avatar
Myle Ott committed
147
        progress.log(stats, tag='train', step=stats['num_updates'])
148
149
150
151
152

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

153
        num_updates = trainer.get_num_updates()
Myle Ott's avatar
Myle Ott committed
154
155
156
157
158
159
        if (
            not args.disable_validation
            and args.save_interval_updates > 0
            and num_updates % args.save_interval_updates == 0
            and num_updates > 0
        ):
160
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
161
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
162
163

        if num_updates >= max_update:
164
165
166
167
168
169
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
170
    progress.print(stats, tag='train', step=stats['num_updates'])
171

Myle Ott's avatar
Myle Ott committed
172
    # reset training meters
173
174
175
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
176
177
178
179
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

180
181
182

def get_training_stats(trainer):
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
183
    stats['loss'] = trainer.get_meter('train_loss')
184
    if trainer.get_meter('train_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
185
186
        nll_loss = trainer.get_meter('train_nll_loss')
        stats['nll_loss'] = nll_loss
187
    else:
Myle Ott's avatar
Myle Ott committed
188
        nll_loss = trainer.get_meter('train_loss')
189
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Myle Ott committed
190
191
192
193
    stats['wps'] = trainer.get_meter('wps')
    stats['ups'] = trainer.get_meter('ups')
    stats['wpb'] = trainer.get_meter('wpb')
    stats['bsz'] = trainer.get_meter('bsz')
194
195
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
Myle Ott's avatar
Myle Ott committed
196
197
198
    stats['gnorm'] = trainer.get_meter('gnorm')
    stats['clip'] = trainer.get_meter('clip')
    stats['oom'] = trainer.get_meter('oom')
199
    if trainer.get_meter('loss_scale') is not None:
Myle Ott's avatar
Myle Ott committed
200
        stats['loss_scale'] = trainer.get_meter('loss_scale')
201
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
202
    stats['train_wall'] = trainer.get_meter('train_wall')
203
204
205
    return stats


Myle Ott's avatar
Myle Ott committed
206
def validate(args, trainer, task, epoch_itr, subsets):
207
    """Evaluate the model on the validation set(s) and return the losses."""
208
209
210
211
212

    if args.fixed_validation_seed is not None:
        # set fixed seed for every validation
        utils.set_torch_seed(args.fixed_validation_seed)

213
214
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
215
        # Initialize data iterator
216
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
217
            dataset=task.dataset(subset),
218
            max_tokens=args.max_tokens_valid,
219
            max_sentences=args.max_sentences_valid,
220
221
222
223
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
224
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
225
            required_batch_size_multiple=args.required_batch_size_multiple,
Myle Ott's avatar
Myle Ott committed
226
            seed=args.seed,
227
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
228
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
229
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
230
        ).next_epoch_itr(shuffle=False)
231
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
232
            args, itr, epoch_itr.epoch,
233
234
235
236
237
238
239
240
241
242
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
243

244
245
246
247
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
248
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
249
250
                    continue
                extra_meters[k].update(v)
251

252
        # log validation stats
253
        stats = get_valid_stats(trainer, args, extra_meters)
254
255
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
256
        progress.print(stats, tag=subset, step=trainer.get_num_updates())
257

258
259
260
261
262
        valid_losses.append(
            stats[args.best_checkpoint_metric].avg
            if args.best_checkpoint_metric == 'loss'
            else stats[args.best_checkpoint_metric]
        )
263
    return valid_losses
264
265


266
def get_valid_stats(trainer, args, extra_meters=None):
267
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
268
    stats['loss'] = trainer.get_meter('valid_loss')
269
    if trainer.get_meter('valid_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
270
271
        nll_loss = trainer.get_meter('valid_nll_loss')
        stats['nll_loss'] = nll_loss
272
    else:
Myle Ott's avatar
Myle Ott committed
273
        nll_loss = stats['loss']
274
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Nits  
Myle Ott committed
275
    stats['num_updates'] = trainer.get_num_updates()
276
    if hasattr(checkpoint_utils.save_checkpoint, 'best'):
277
        key = 'best_{0}'.format(args.best_checkpoint_metric)
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
        best_function = max if args.maximize_best_checkpoint_metric else min

        current_metric = None
        if args.best_checkpoint_metric == 'loss':
            current_metric = stats['loss'].avg
        elif args.best_checkpoint_metric in extra_meters:
            current_metric = extra_meters[args.best_checkpoint_metric].avg
        elif args.best_checkpoint_metric in stats:
            current_metric = stats[args.best_checkpoint_metric]
        else:
            raise ValueError("best_checkpoint_metric not found in logs")

        stats[key] = best_function(
            checkpoint_utils.save_checkpoint.best,
            current_metric,
        )
294
295
296
    return stats


297
def distributed_main(i, args, start_rank=0):
Myle Ott's avatar
Myle Ott committed
298
299
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
300
301
        args.distributed_rank = start_rank + i
    main(args, init_distributed=True)
Myle Ott's avatar
Myle Ott committed
302
303


Myle Ott's avatar
Myle Ott committed
304
def cli_main():
Myle Ott's avatar
Myle Ott committed
305
306
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
307

Myle Ott's avatar
Myle Ott committed
308
309
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
310

Myle Ott's avatar
Myle Ott committed
311
312
    if args.distributed_init_method is not None:
        # distributed training
313
314
315
316
317
318
319
320
321
322
        if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
            start_rank = args.distributed_rank
            args.distributed_rank = None  # assign automatically
            torch.multiprocessing.spawn(
                fn=distributed_main,
                args=(args, start_rank),
                nprocs=torch.cuda.device_count(),
            )
        else:
            distributed_main(args.device_id, args)
323
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
324
        # fallback for single node with multiple GPUs
325
        assert args.distributed_world_size <= torch.cuda.device_count()
326
327
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
328
        args.distributed_rank = None  # set based on device id
Myle Ott's avatar
Myle Ott committed
329
330
        if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
            print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
Myle Ott's avatar
Myle Ott committed
331
332
333
334
335
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
336
    else:
Myle Ott's avatar
Myle Ott committed
337
        # single GPU training
338
        main(args)
Myle Ott's avatar
Myle Ott committed
339
340
341
342


if __name__ == '__main__':
    cli_main()