train.py 12.1 KB
Newer Older
Myle Ott's avatar
Myle Ott committed
1
#!/usr/bin/env python3 -u
2
# Copyright (c) Facebook, Inc. and its affiliates.
Sergey Edunov's avatar
Sergey Edunov committed
3
#
4
5
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
Myle Ott's avatar
Myle Ott committed
6
7
8
"""
Train a new model on one or across multiple GPUs.
"""
Sergey Edunov's avatar
Sergey Edunov committed
9

10
11
import collections
import math
12
import numpy as np
13
14
import random

15
import torch
Sergey Edunov's avatar
Sergey Edunov committed
16

Myle Ott's avatar
Myle Ott committed
17
from fairseq import checkpoint_utils, distributed_utils, options, progress_bar, tasks, utils
18
from fairseq.data import iterators
19
20
from fairseq.trainer import Trainer
from fairseq.meters import AverageMeter, StopwatchMeter
Sergey Edunov's avatar
Sergey Edunov committed
21

Myle Ott's avatar
Myle Ott committed
22

23
def main(args, init_distributed=False):
Myle Ott's avatar
Myle Ott committed
24
    utils.import_user_module(args)
25

26
27
    assert args.max_tokens is not None or args.max_sentences is not None, \
        'Must specify batch size either with --max-tokens or --max-sentences'
28

29
    # Initialize CUDA and distributed training
Myle Ott's avatar
Myle Ott committed
30
31
    if torch.cuda.is_available() and not args.cpu:
        torch.cuda.set_device(args.device_id)
32
    np.random.seed(args.seed)
33
    torch.manual_seed(args.seed)
34
35
36
    if init_distributed:
        args.distributed_rank = distributed_utils.distributed_init(args)

37
38
39
    if distributed_utils.is_master(args):
        checkpoint_utils.verify_checkpoint_directory(args.save_dir)

40
41
    # Print args
    print(args)
42

Myle Ott's avatar
Myle Ott committed
43
44
    # Setup task, e.g., translation, language modeling, etc.
    task = tasks.setup_task(args)
45

Myle Ott's avatar
Myle Ott committed
46
    # Load valid dataset (we load training data below, based on the latest checkpoint)
Naman Goyal's avatar
Naman Goyal committed
47
    for valid_sub_split in args.valid_subset.split(','):
48
        task.load_dataset(valid_sub_split, combine=False, epoch=0)
49

Myle Ott's avatar
Myle Ott committed
50
51
52
    # Build model and criterion
    model = task.build_model(args)
    criterion = task.build_criterion(args)
53
    print(model)
54
    print('| model {}, criterion {}'.format(args.arch, criterion.__class__.__name__))
55
56
57
58
    print('| num. model params: {} (num. trained: {})'.format(
        sum(p.numel() for p in model.parameters()),
        sum(p.numel() for p in model.parameters() if p.requires_grad),
    ))
59
60

    # Build trainer
Myle Ott's avatar
Myle Ott committed
61
    trainer = Trainer(args, task, model, criterion)
62
63
64
65
66
67
    print('| training on {} GPUs'.format(args.distributed_world_size))
    print('| max tokens per GPU = {} and max sentences per GPU = {}'.format(
        args.max_tokens,
        args.max_sentences,
    ))

Myle Ott's avatar
Myle Ott committed
68
69
70
    # Load the latest checkpoint if one is available and restore the
    # corresponding train iterator
    extra_state, epoch_itr = checkpoint_utils.load_checkpoint(args, trainer)
71
72
73
74
75
76
77

    # Train until the learning rate gets too small
    max_epoch = args.max_epoch or math.inf
    max_update = args.max_update or math.inf
    lr = trainer.get_lr()
    train_meter = StopwatchMeter()
    train_meter.start()
78
    valid_subsets = args.valid_subset.split(',')
Myle Ott's avatar
Myle Ott committed
79
    while lr > args.min_lr and epoch_itr.epoch < max_epoch and trainer.get_num_updates() < max_update:
80
        # train for one epoch
Myle Ott's avatar
Myle Ott committed
81
        train(args, trainer, task, epoch_itr)
82

Myle Ott's avatar
Myle Ott committed
83
        if not args.disable_validation and epoch_itr.epoch % args.validate_interval == 0:
Myle Ott's avatar
Myle Ott committed
84
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
Myle Ott's avatar
Myle Ott committed
85
86
        else:
            valid_losses = [None]
87
88

        # only use first validation loss to update the learning rate
Myle Ott's avatar
Myle Ott committed
89
        lr = trainer.lr_step(epoch_itr.epoch, valid_losses[0])
90
91

        # save checkpoint
Myle Ott's avatar
Myle Ott committed
92
        if epoch_itr.epoch % args.save_interval == 0:
Myle Ott's avatar
Myle Ott committed
93
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
Naman Goyal's avatar
Naman Goyal committed
94

95
        if ':' in getattr(args, 'data', ''):
Myle Ott's avatar
Myle Ott committed
96
97
            # sharded data: get train iterator for next epoch
            epoch_itr = trainer.get_train_iterator(epoch_itr.epoch)
98
99
100
101
    train_meter.stop()
    print('| done training in {:.1f} seconds'.format(train_meter.sum))


Myle Ott's avatar
Myle Ott committed
102
def train(args, trainer, task, epoch_itr):
103
    """Train the model for one epoch."""
104
    # Update parameters every N batches
Myle Ott's avatar
Myle Ott committed
105
    update_freq = args.update_freq[epoch_itr.epoch - 1] \
Myle Ott's avatar
Myle Ott committed
106
        if epoch_itr.epoch <= len(args.update_freq) else args.update_freq[-1]
Myle Ott's avatar
Myle Ott committed
107
108
109
110
111
112

    # Initialize data iterator
    itr = epoch_itr.next_epoch_itr(
        fix_batches_to_gpus=args.fix_batches_to_gpus,
        shuffle=(epoch_itr.epoch >= args.curriculum),
    )
113
114
115
116
117
    itr = iterators.GroupedIterator(itr, update_freq)
    progress = progress_bar.build_progress_bar(
        args, itr, epoch_itr.epoch, no_progress_bar='simple',
    )

118
    extra_meters = collections.defaultdict(lambda: AverageMeter())
119
    valid_subsets = args.valid_subset.split(',')
120
    max_update = args.max_update or math.inf
121
122
123
    for i, samples in enumerate(progress, start=epoch_itr.iterations_in_epoch):
        log_output = trainer.train_step(samples)
        if log_output is None:
124
125
126
127
128
            continue

        # log mid-epoch stats
        stats = get_training_stats(trainer)
        for k, v in log_output.items():
129
            if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
130
                continue  # these are already logged above
131
            if 'loss' in k or k == 'accuracy':
132
133
134
135
                extra_meters[k].update(v, log_output['sample_size'])
            else:
                extra_meters[k].update(v)
            stats[k] = extra_meters[k].avg
Myle Ott's avatar
Myle Ott committed
136
        progress.log(stats, tag='train', step=stats['num_updates'])
137
138
139
140
141

        # ignore the first mini-batch in words-per-second calculation
        if i == 0:
            trainer.get_meter('wps').reset()

142
        num_updates = trainer.get_num_updates()
Myle Ott's avatar
Myle Ott committed
143
144
145
146
147
148
        if (
            not args.disable_validation
            and args.save_interval_updates > 0
            and num_updates % args.save_interval_updates == 0
            and num_updates > 0
        ):
149
            valid_losses = validate(args, trainer, task, epoch_itr, valid_subsets)
150
            checkpoint_utils.save_checkpoint(args, trainer, epoch_itr, valid_losses[0])
151
152

        if num_updates >= max_update:
153
154
155
156
157
158
            break

    # log end-of-epoch stats
    stats = get_training_stats(trainer)
    for k, meter in extra_meters.items():
        stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
159
    progress.print(stats, tag='train', step=stats['num_updates'])
160

Myle Ott's avatar
Myle Ott committed
161
    # reset training meters
162
163
164
    for k in [
        'train_loss', 'train_nll_loss', 'wps', 'ups', 'wpb', 'bsz', 'gnorm', 'clip',
    ]:
Myle Ott's avatar
Myle Ott committed
165
166
167
168
        meter = trainer.get_meter(k)
        if meter is not None:
            meter.reset()

169
170
171

def get_training_stats(trainer):
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
172
    stats['loss'] = trainer.get_meter('train_loss')
173
    if trainer.get_meter('train_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
174
175
        nll_loss = trainer.get_meter('train_nll_loss')
        stats['nll_loss'] = nll_loss
176
    else:
Myle Ott's avatar
Myle Ott committed
177
        nll_loss = trainer.get_meter('train_loss')
178
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Myle Ott committed
179
180
181
182
    stats['wps'] = trainer.get_meter('wps')
    stats['ups'] = trainer.get_meter('ups')
    stats['wpb'] = trainer.get_meter('wpb')
    stats['bsz'] = trainer.get_meter('bsz')
183
184
    stats['num_updates'] = trainer.get_num_updates()
    stats['lr'] = trainer.get_lr()
Myle Ott's avatar
Myle Ott committed
185
186
187
    stats['gnorm'] = trainer.get_meter('gnorm')
    stats['clip'] = trainer.get_meter('clip')
    stats['oom'] = trainer.get_meter('oom')
188
    if trainer.get_meter('loss_scale') is not None:
Myle Ott's avatar
Myle Ott committed
189
        stats['loss_scale'] = trainer.get_meter('loss_scale')
190
    stats['wall'] = round(trainer.get_meter('wall').elapsed_time)
Myle Ott's avatar
Myle Ott committed
191
    stats['train_wall'] = trainer.get_meter('train_wall')
192
193
194
    return stats


Myle Ott's avatar
Myle Ott committed
195
def validate(args, trainer, task, epoch_itr, subsets):
196
197
198
    """Evaluate the model on the validation set(s) and return the losses."""
    valid_losses = []
    for subset in subsets:
Myle Ott's avatar
Myle Ott committed
199
        # Initialize data iterator
200
        itr = task.get_batch_iterator(
Myle Ott's avatar
Myle Ott committed
201
            dataset=task.dataset(subset),
202
            max_tokens=args.max_tokens_valid,
203
            max_sentences=args.max_sentences_valid,
204
205
206
207
            max_positions=utils.resolve_max_positions(
                task.max_positions(),
                trainer.get_model().max_positions(),
            ),
Myle Ott's avatar
Myle Ott committed
208
            ignore_invalid_inputs=args.skip_invalid_size_inputs_valid_test,
209
            required_batch_size_multiple=args.required_batch_size_multiple,
Myle Ott's avatar
Myle Ott committed
210
            seed=args.seed,
211
            num_shards=args.distributed_world_size,
Myle Ott's avatar
Myle Ott committed
212
            shard_id=args.distributed_rank,
Myle Ott's avatar
Myle Ott committed
213
            num_workers=args.num_workers,
Myle Ott's avatar
Myle Ott committed
214
        ).next_epoch_itr(shuffle=False)
215
        progress = progress_bar.build_progress_bar(
Myle Ott's avatar
Myle Ott committed
216
            args, itr, epoch_itr.epoch,
217
218
219
220
221
222
223
224
225
226
            prefix='valid on \'{}\' subset'.format(subset),
            no_progress_bar='simple'
        )

        # reset validation loss meters
        for k in ['valid_loss', 'valid_nll_loss']:
            meter = trainer.get_meter(k)
            if meter is not None:
                meter.reset()
        extra_meters = collections.defaultdict(lambda: AverageMeter())
Myle Ott's avatar
Myle Ott committed
227

228
229
230
231
        for sample in progress:
            log_output = trainer.valid_step(sample)

            for k, v in log_output.items():
232
                if k in ['loss', 'nll_loss', 'ntokens', 'nsentences', 'sample_size']:
233
234
                    continue
                extra_meters[k].update(v)
235

236
        # log validation stats
237
        stats = get_valid_stats(trainer, args, extra_meters)
238
239
        for k, meter in extra_meters.items():
            stats[k] = meter.avg
Myle Ott's avatar
Myle Ott committed
240
        progress.print(stats, tag=subset, step=trainer.get_num_updates())
241

242
243
244
245
246
        valid_losses.append(
            stats[args.best_checkpoint_metric].avg
            if args.best_checkpoint_metric == 'loss'
            else stats[args.best_checkpoint_metric]
        )
247
    return valid_losses
248
249


250
def get_valid_stats(trainer, args, extra_meters=None):
251
    stats = collections.OrderedDict()
Myle Ott's avatar
Myle Ott committed
252
    stats['loss'] = trainer.get_meter('valid_loss')
253
    if trainer.get_meter('valid_nll_loss').count > 0:
Myle Ott's avatar
Myle Ott committed
254
255
        nll_loss = trainer.get_meter('valid_nll_loss')
        stats['nll_loss'] = nll_loss
256
    else:
Myle Ott's avatar
Myle Ott committed
257
        nll_loss = stats['loss']
258
    stats['ppl'] = utils.get_perplexity(nll_loss.avg)
Myle Ott's avatar
Nits  
Myle Ott committed
259
    stats['num_updates'] = trainer.get_num_updates()
260
    if hasattr(checkpoint_utils.save_checkpoint, 'best'):
261
        key = 'best_{0}'.format(args.best_checkpoint_metric)
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        best_function = max if args.maximize_best_checkpoint_metric else min

        current_metric = None
        if args.best_checkpoint_metric == 'loss':
            current_metric = stats['loss'].avg
        elif args.best_checkpoint_metric in extra_meters:
            current_metric = extra_meters[args.best_checkpoint_metric].avg
        elif args.best_checkpoint_metric in stats:
            current_metric = stats[args.best_checkpoint_metric]
        else:
            raise ValueError("best_checkpoint_metric not found in logs")

        stats[key] = best_function(
            checkpoint_utils.save_checkpoint.best,
            current_metric,
        )
278
279
280
    return stats


281
def distributed_main(i, args, start_rank=0):
Myle Ott's avatar
Myle Ott committed
282
283
    args.device_id = i
    if args.distributed_rank is None:  # torch.multiprocessing.spawn
284
285
        args.distributed_rank = start_rank + i
    main(args, init_distributed=True)
Myle Ott's avatar
Myle Ott committed
286
287


Myle Ott's avatar
Myle Ott committed
288
def cli_main():
Myle Ott's avatar
Myle Ott committed
289
290
    parser = options.get_training_parser()
    args = options.parse_args_and_arch(parser)
291

Myle Ott's avatar
Myle Ott committed
292
293
    if args.distributed_init_method is None:
        distributed_utils.infer_init_method(args)
294

Myle Ott's avatar
Myle Ott committed
295
296
    if args.distributed_init_method is not None:
        # distributed training
297
298
299
300
301
302
303
304
305
306
        if torch.cuda.device_count() > 1 and not args.distributed_no_spawn:
            start_rank = args.distributed_rank
            args.distributed_rank = None  # assign automatically
            torch.multiprocessing.spawn(
                fn=distributed_main,
                args=(args, start_rank),
                nprocs=torch.cuda.device_count(),
            )
        else:
            distributed_main(args.device_id, args)
307
    elif args.distributed_world_size > 1:
Myle Ott's avatar
Myle Ott committed
308
        # fallback for single node with multiple GPUs
309
        assert args.distributed_world_size <= torch.cuda.device_count()
310
311
        port = random.randint(10000, 20000)
        args.distributed_init_method = 'tcp://localhost:{port}'.format(port=port)
Myle Ott's avatar
Myle Ott committed
312
        args.distributed_rank = None  # set based on device id
Myle Ott's avatar
Myle Ott committed
313
314
        if max(args.update_freq) > 1 and args.ddp_backend != 'no_c10d':
            print('| NOTE: you may get better performance with: --ddp-backend=no_c10d')
Myle Ott's avatar
Myle Ott committed
315
316
317
318
319
        torch.multiprocessing.spawn(
            fn=distributed_main,
            args=(args, ),
            nprocs=args.distributed_world_size,
        )
320
    else:
Myle Ott's avatar
Myle Ott committed
321
        # single GPU training
322
        main(args)
Myle Ott's avatar
Myle Ott committed
323
324
325
326


if __name__ == '__main__':
    cli_main()