"official/utils/flags/_misc.py" did not exist on "6ec3452c61d4bb530c9c080906ebf49dd7cbd342"
model_runner.py 76.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import datetime
17
import gc
18
import inspect
Shuo Yang's avatar
Shuo Yang committed
19
import json
20
import logging
21
import os
22
import time
23
24
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26

import torch
27
import torch.distributed as dist
28
29
30
31

from sglang.srt.configs.device_config import DeviceConfig
from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
32
from sglang.srt.configs.update_config import adjust_config_with_unaligned_cpu_tp
33
from sglang.srt.constants import GPU_MEMORY_TYPE_WEIGHTS
34
from sglang.srt.distributed import (
zhyncs's avatar
zhyncs committed
35
    get_tp_group,
36
    get_world_group,
zhyncs's avatar
zhyncs committed
37
38
    init_distributed_environment,
    initialize_model_parallel,
39
    set_custom_all_reduce,
40
    set_mscclpp_all_reduce,
zhyncs's avatar
zhyncs committed
41
)
42
from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
fzyzcjy's avatar
fzyzcjy committed
43
44
45
46
47
48
49
50
51
52
53
54
55
from sglang.srt.eplb.eplb_manager import EPLBManager
from sglang.srt.eplb.expert_distribution import (
    ExpertDistributionRecorder,
    get_global_expert_distribution_recorder,
    set_global_expert_distribution_recorder,
)
from sglang.srt.eplb.expert_location import (
    ExpertLocationMetadata,
    compute_initial_expert_location_metadata,
    get_global_expert_location_metadata,
    set_global_expert_location_metadata,
)
from sglang.srt.eplb.expert_location_updater import ExpertLocationUpdater
56
from sglang.srt.layers.attention.tbo_backend import TboAttnBackend
57
58
from sglang.srt.layers.dp_attention import (
    get_attention_tp_group,
59
    get_attention_tp_size,
60
61
    initialize_dp_attention,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
62
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
63
64
65
from sglang.srt.layers.quantization import (
    deep_gemm_wrapper,
    monkey_patch_isinstance_for_vllm_base_layer,
66
)
67
from sglang.srt.layers.sampler import Sampler
68
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
69
from sglang.srt.layers.utils import is_sm100_supported
70
from sglang.srt.lora.lora_manager import LoRAManager
71
from sglang.srt.lora.lora_registry import LoRARef
72
73
74
75
from sglang.srt.managers.schedule_batch import (
    GLOBAL_SERVER_ARGS_KEYS,
    global_server_args_dict,
)
76
77
78
from sglang.srt.mem_cache.allocator import (
    BaseTokenToKVPoolAllocator,
    PagedTokenToKVPoolAllocator,
tarinkk's avatar
tarinkk committed
79
    SWATokenToKVPoolAllocator,
80
81
    TokenToKVPoolAllocator,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
82
from sglang.srt.mem_cache.allocator_ascend import AscendPagedTokenToKVPoolAllocator
83
from sglang.srt.mem_cache.memory_pool import (
84
85
    AscendMLAPagedTokenToKVPool,
    AscendTokenToKVPool,
Shuo Yang's avatar
Shuo Yang committed
86
    DoubleSparseTokenToKVPool,
87
88
89
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
tarinkk's avatar
tarinkk committed
90
    SWAKVPool,
91
)
92
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
93
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
94
from sglang.srt.model_executor.npu_graph_runner import NPUGraphRunner
95
from sglang.srt.model_loader import get_model
96
from sglang.srt.model_loader.loader import DefaultModelLoader, get_model_loader
Lianmin Zheng's avatar
Lianmin Zheng committed
97
from sglang.srt.model_loader.utils import set_default_torch_dtype
98
from sglang.srt.model_loader.weight_utils import default_weight_loader
99
100
101
102
103
from sglang.srt.offloader import (
    create_offloader_from_server_args,
    get_offloader,
    set_offloader,
)
104
from sglang.srt.patch_torch import monkey_patch_torch_reductions
105
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
106
from sglang.srt.server_args import ServerArgs
107
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
108
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
109
from sglang.srt.utils import (
110
    MultiprocessingSerializer,
111
    cpu_has_amx_support,
112
    dynamic_import,
113
    enable_show_time_cost,
114
    get_available_gpu_memory,
115
    get_bool_env_var,
116
    get_cpu_ids_by_node,
117
    init_custom_process_group,
118
    is_fa3_default_architecture,
119
    is_flashinfer_available,
HAI's avatar
HAI committed
120
    is_hip,
121
    is_hopper_with_cuda_12_3,
122
    is_no_spec_infer_or_topk_one,
123
    is_npu,
124
    monkey_patch_p2p_access_check,
125
    monkey_patch_vllm_gguf_config,
126
    set_cuda_arch,
127
)
128
129
130
131
from sglang.srt.weight_sync.tensor_bucket import (
    FlattenedTensorBucket,
    FlattenedTensorMetadata,
)
132

133
_is_hip = is_hip()
134
_is_npu = is_npu()
135
_is_cpu_amx_available = cpu_has_amx_support()
136

Lianmin Zheng's avatar
Lianmin Zheng committed
137
# Use a small KV cache pool size for tests in CI
138
SGLANG_CI_SMALL_KV_SIZE = os.getenv("SGLANG_CI_SMALL_KV_SIZE", None)
Lianmin Zheng's avatar
Lianmin Zheng committed
139
140

# Detect stragger ranks in model loading
141
142
UNBALANCED_MODEL_LOADING_TIMEOUT_S = 300

Lianmin Zheng's avatar
Lianmin Zheng committed
143
144
logger = logging.getLogger(__name__)

145

146
147
148
149
150
151
152
153
154
155
156
157
158
class RankZeroFilter(logging.Filter):
    """Filter that only allows INFO level logs from rank 0, but allows all other levels from any rank."""

    def __init__(self, is_rank_zero):
        super().__init__()
        self.is_rank_zero = is_rank_zero

    def filter(self, record):
        if record.levelno == logging.INFO:
            return self.is_rank_zero
        return True


Lianmin Zheng's avatar
Lianmin Zheng committed
159
class ModelRunner:
160
161
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
162
163
    def __init__(
        self,
164
        model_config: ModelConfig,
165
166
167
168
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
Cheng Wan's avatar
Cheng Wan committed
169
170
        moe_ep_rank: int,
        moe_ep_size: int,
171
172
        pp_rank: int,
        pp_size: int,
173
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
174
        server_args: ServerArgs,
175
        is_draft_worker: bool = False,
176
        req_to_token_pool: Optional[ReqToTokenPool] = None,
177
        token_to_kv_pool_allocator: Optional[BaseTokenToKVPoolAllocator] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
178
    ):
179
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
180
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
181
        self.device = server_args.device
182
        self.gpu_id = gpu_id
Lianmin Zheng's avatar
Lianmin Zheng committed
183
184
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Cheng Wan's avatar
Cheng Wan committed
185
186
        self.moe_ep_rank = moe_ep_rank
        self.moe_ep_size = moe_ep_size
187
        self.dp_size = server_args.dp_size
188
189
        self.pp_rank = pp_rank
        self.pp_size = pp_size
190
        self.model_config = model_config
Zhang, Liangang's avatar
Zhang, Liangang committed
191
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
192
        self.server_args = server_args
193
        self.is_draft_worker = is_draft_worker
194
195
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
196
197
198
        self.is_multimodal_chunked_prefill_supported = (
            model_config.is_multimodal_chunked_prefill_supported
        )
199
200
201
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
202
        self.page_size = server_args.page_size
203
204
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
tarinkk's avatar
tarinkk committed
205
        self.is_hybrid = model_config.is_hybrid
Baizhou Zhang's avatar
Baizhou Zhang committed
206
        self.use_mla_backend = self.model_config.attention_arch == AttentionArch.MLA
Chang Su's avatar
Chang Su committed
207
        self.attention_chunk_size = model_config.attention_chunk_size
208
209
        self.forward_pass_id = 0

Lianmin Zheng's avatar
Lianmin Zheng committed
210
211
212
        # Apply the rank zero filter to logger
        if not any(isinstance(f, RankZeroFilter) for f in logger.filters):
            logger.addFilter(RankZeroFilter(tp_rank == 0))
213
214
        if server_args.show_time_cost:
            enable_show_time_cost()
215

Lianmin Zheng's avatar
Lianmin Zheng committed
216
217
218
        # Model-specific adjustment
        self.model_specific_adjustment()

219
        # Global vars
220
        global_server_args_dict.update(
221
222
223
            {k: getattr(server_args, k) for k in GLOBAL_SERVER_ARGS_KEYS}
            | {
                # TODO it is indeed not a "server args"
224
                "use_mla_backend": self.use_mla_backend,
225
                "speculative_algorithm": self.spec_algorithm,
226
            }
227
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
228

229
230
231
232
        # Init OpenMP threads binding for CPU
        if self.device == "cpu":
            self.init_threads_binding()

233
        # Get memory before model loading
234
        min_per_gpu_memory = self.init_torch_distributed()
235

236
237
238
        # CPU offload
        set_offloader(create_offloader_from_server_args(server_args))

239
        # Update deep gemm configure
240
241
        if deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
            deep_gemm_wrapper.update_deep_gemm_config(gpu_id, server_args)
242

Lianmin Zheng's avatar
Lianmin Zheng committed
243
        # Initialize the model runner
244
245
        self.initialize(min_per_gpu_memory)

Lianmin Zheng's avatar
Lianmin Zheng committed
246
        # Temporary cached values
247
248
249
        self.support_pp = (
            "pp_proxy_tensors" in inspect.signature(self.model.forward).parameters
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
250
251

        # For weight updates
252
        self._model_update_group = {}
253

254
255
    def initialize(self, min_per_gpu_memory: float):
        server_args = self.server_args
256

257
258
259
260
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=self.server_args.enable_memory_saver
        )

261
262
263
264
265
266
267
268
        if not self.is_draft_worker:
            set_global_expert_location_metadata(
                compute_initial_expert_location_metadata(server_args, self.model_config)
            )
            if self.tp_rank == 0 and get_bool_env_var(
                "SGLANG_LOG_EXPERT_LOCATION_METADATA"
            ):
                logger.info(
269
                    f"Initial expert_location_metadata: {get_global_expert_location_metadata()}"
270
271
272
273
274
275
276
277
278
279
                )

            set_global_expert_distribution_recorder(
                ExpertDistributionRecorder.init_new(
                    server_args,
                    get_global_expert_location_metadata(),
                    rank=self.tp_rank,
                )
            )

Lianmin Zheng's avatar
Lianmin Zheng committed
280
        # Expert parallelism
281
282
283
284
285
        self.eplb_manager = (
            EPLBManager(self)
            if self.server_args.enable_eplb and (not self.is_draft_worker)
            else None
        )
286
        self.expert_location_updater = ExpertLocationUpdater()
287

288
        # Load the model
289
        self.sampler = Sampler()
290
        self.load_model()
291

292
        # Check if the model is using hybrid SWA
Hanming Lu's avatar
Hanming Lu committed
293
294
295
296
297
298
299
300
301
        if (
            not self.server_args.disable_hybrid_swa_memory
            and self.sliding_window_size is not None
            and self.sliding_window_size > 0
        ):
            architectures = self.model_config.hf_config.architectures
            if architectures and not any("Llama4" in arch for arch in architectures):
                self.is_hybrid = self.model_config.is_hybrid = True

302
303
304
305
306
307
308
309
        # For MTP models like DeepSeek-V3 or GLM-4.5, the MTP layer(s) are used separately as draft
        # models for speculative decoding. In those cases, `num_nextn_predict_layers` is used to
        # determine the number of layers.
        model_has_mtp_layers = self.model_config.num_nextn_predict_layers is not None
        model_num_layers = (
            self.model_config.num_nextn_predict_layers
            if self.is_draft_worker and model_has_mtp_layers
            else self.model_config.num_hidden_layers
310
        )
311
312
        self.start_layer = getattr(self.model, "start_layer", 0)
        self.end_layer = getattr(self.model, "end_layer", model_num_layers)
313
        self.num_effective_layers = self.end_layer - self.start_layer
314
315
316
317
318
319
320
        assert (
            (not model_has_mtp_layers)
            or (self.spec_algorithm.is_none())
            or (
                (not self.spec_algorithm.is_none())
                and (self.num_effective_layers == model_num_layers)
            )
321
        ), "PP is not compatible with MTP models."
322

323
        # Apply torchao quantization
324
325
326
327
328
329
        torchao_applied = getattr(self.model, "torchao_applied", False)
        # In layered loading, torchao may have been applied
        if not torchao_applied:
            apply_torchao_config_to_model(
                self.model, global_server_args_dict["torchao_config"]
            )
330

331
        # Apply torch TP if the model supports it
332
333
334
335
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()

336
        # Init lora
337
        if server_args.enable_lora:
338
            self.init_lora_manager()
339
340

        # Init memory pool and attention backends
341
342
        self.init_memory_pool(
            min_per_gpu_memory,
343
            server_args.max_running_requests,
344
345
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
346
347
348
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
349
350
351
352
            self.init_device_graphs()
        elif self.device == "npu":
            self.init_attention_backend()
            self.init_device_graphs()
Zhang, Liangang's avatar
Zhang, Liangang committed
353
        else:
354
            self.graph_runner = None
355
            self.cuda_graph_mem_usage = 0
Zhang, Liangang's avatar
Zhang, Liangang committed
356
            self.init_attention_backend()
357

James Liu's avatar
James Liu committed
358
359
        # auxiliary hidden capture mode. TODO: expose this to server args?
        if self.spec_algorithm.is_eagle3() and not self.is_draft_worker:
lukec's avatar
lukec committed
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
            # load draft config
            draft_model_config = ModelConfig.from_server_args(
                server_args,
                model_path=(server_args.speculative_draft_model_path),
                is_draft_model=True,
            )

            try:
                # get the aux layer from draft model config
                eagle_config = getattr(
                    draft_model_config.hf_config, "eagle_config", None
                )
                eagle_aux_hidden_state_layer_ids = eagle_config[
                    "eagle_aux_hidden_state_layer_ids"
                ]
            except:
                # if there is no aux layer, set to None
                eagle_aux_hidden_state_layer_ids = None

            self.model.set_eagle3_layers_to_capture(eagle_aux_hidden_state_layer_ids)
James Liu's avatar
James Liu committed
380

381
382
383
    def model_specific_adjustment(self):
        server_args = self.server_args

384
385
386
        if (
            server_args.attention_backend == "intel_amx"
            and server_args.device == "cpu"
387
            and not _is_cpu_amx_available
388
389
390
391
392
393
        ):
            logger.info(
                "The current platform does not support Intel AMX, will fallback to torch_native backend."
            )
            server_args.attention_backend = "torch_native"

394
395
396
397
398
399
        if server_args.prefill_attention_backend is not None and (
            server_args.prefill_attention_backend
            == server_args.decode_attention_backend
        ):  # override the default attention backend
            server_args.attention_backend = server_args.prefill_attention_backend

400
401
402
403
404
405
406
407
408
409
410
411
412
        if (
            getattr(self.model_config.hf_config, "dual_chunk_attention_config", None)
            is not None
        ):
            if server_args.attention_backend is None:
                server_args.attention_backend = "dual_chunk_flash_attn"
                logger.info("Dual chunk attention is turned on by default.")
            elif server_args.attention_backend != "dual_chunk_flash_attn":
                raise ValueError(
                    "Dual chunk attention is enabled, but attention backend is set to "
                    f"{server_args.attention_backend}. Please set it to 'dual_chunk_flash_attn'."
                )

413
        if server_args.attention_backend is None:
414
            """
Lianmin Zheng's avatar
Lianmin Zheng committed
415
416
            Auto select the fastest attention backend.

417
418
419
420
421
            1. Models with MHA Architecture (e.g: Llama, QWen)
                1.1 We will turn on FA3 on hopper unless user use spec decode with topk > 1 or page_size > 1.
                1.2 In other cases, we will use flashinfer if available, otherwise use triton.
            2. Models with MLA Architecture and using FA3
                2.1 We will use FA3 backend on hopper.
422
423
                2.2 We will use Flashinfer backend on blackwell.
                2.3 Otherwise, we will use triton backend.
424
425
            """

426
            if not self.use_mla_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
427
                # MHA architecture
428
                if (
429
                    is_hopper_with_cuda_12_3()
430
431
432
433
                    and is_no_spec_infer_or_topk_one(server_args)
                    and is_fa3_default_architecture(self.model_config.hf_config)
                ):
                    server_args.attention_backend = "fa3"
434
435
                elif _is_hip:
                    server_args.attention_backend = "aiter"
436
437
                elif _is_npu:
                    server_args.attention_backend = "ascend"
438
439
440
441
                else:
                    server_args.attention_backend = (
                        "flashinfer" if is_flashinfer_available() else "triton"
                    )
442
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
443
                # MLA architecture
444
                if is_hopper_with_cuda_12_3():
445
                    server_args.attention_backend = "fa3"
446
447
                elif is_sm100_supported():
                    server_args.attention_backend = "flashinfer"
448
449
450
451
452
453
454
455
456
                elif _is_hip:
                    head_num = self.model_config.get_num_kv_heads(self.tp_size)
                    # TODO current aiter only support head number 16 or 128 head number
                    if (
                        head_num == 128 or head_num == 16
                    ) and self.spec_algorithm.is_none():
                        server_args.attention_backend = "aiter"
                    else:
                        server_args.attention_backend = "triton"
457
458
                elif _is_npu:
                    server_args.attention_backend = "ascend"
459
460
                else:
                    server_args.attention_backend = "triton"
461
            logger.info(
462
                f"Attention backend not explicitly specified. Use {server_args.attention_backend} backend by default."
463
            )
464
        elif self.use_mla_backend:
465
            if server_args.device != "cpu":
466
                if server_args.attention_backend in [
467
                    "aiter",
468
469
470
471
                    "flashinfer",
                    "fa3",
                    "triton",
                    "flashmla",
472
                    "cutlass_mla",
473
                    "trtllm_mla",
474
                    "ascend",
475
                ]:
476
477
478
                    logger.info(
                        f"MLA optimization is turned on. Use {server_args.attention_backend} backend."
                    )
479
                else:
480
481
482
483
                    raise ValueError(
                        f"Invalid attention backend for MLA: {server_args.attention_backend}"
                    )
            else:
484
485
486
487
                if server_args.attention_backend != "intel_amx":
                    raise ValueError(
                        "MLA optimization not supported on CPU except for intel_amx backend."
                    )
488

489
490
491
492
493
494
495
496
497
498
        if (
            server_args.attention_backend == "fa3"
            and server_args.kv_cache_dtype == "fp8_e5m2"
        ):
            logger.warning(
                "FlashAttention3 only supports fp8_e4m3 if using FP8; "
                "Setting attention backend to triton."
            )
            server_args.attention_backend = "triton"

499
        if server_args.enable_double_sparsity:
500
501
502
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
503
504
505
506
507
508
509
510
511
            server_args.attention_backend = "triton"
            server_args.disable_cuda_graph = True
            if server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)

        if self.is_multimodal:
512
513
514
            if not self.is_multimodal_chunked_prefill_supported:
                server_args.chunked_prefill_size = -1
                logger.info(
515
                    f"Automatically turn off --chunked-prefill-size as it is not supported for "
516
517
                    f"{self.model_config.hf_config.model_type}"
                )
518

519
520
521
522
        if not self.use_mla_backend:
            server_args.disable_chunked_prefix_cache = True

        if not server_args.disable_chunked_prefix_cache:
523
            logger.info("Chunked prefix cache is turned on.")
524

kk's avatar
kk committed
525
526
527
528
        if server_args.attention_backend == "aiter":
            if self.model_config.context_len > 8192:
                self.mem_fraction_static *= 0.85

529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        if (
            server_args.enable_hierarchical_cache
            and server_args.hicache_io_backend == "kernel"
        ):
            # fix for the compatibility issue with FlashAttention3 decoding and HiCache kernel backend
            if server_args.decode_attention_backend is None:
                if not self.use_mla_backend:
                    server_args.decode_attention_backend = (
                        "flashinfer" if is_flashinfer_available() else "triton"
                    )
                else:
                    server_args.decode_attention_backend = (
                        "flashinfer" if is_sm100_supported() else "triton"
                    )
            elif server_args.decode_attention_backend == "fa3":
                server_args.hicache_io_backend = "direct"
                logger.warning(
                    "FlashAttention3 decode backend is not compatible with hierarchical cache. "
                    f"Setting hicache_io_backend to vanilla I/O, which may lead to suboptimal performance with small page sizes."
                )

550
    def init_torch_distributed(self):
551
        logger.info("Init torch distributed begin.")
552

553
554
555
556
557
558
559
560
        try:
            torch.get_device_module(self.device).set_device(self.gpu_id)
        except Exception:
            logger.warning(
                f"Context: {self.device=} {self.gpu_id=} {os.environ.get('CUDA_VISIBLE_DEVICES')=} {self.tp_rank=} {self.tp_size=}"
            )
            raise

Zhang, Liangang's avatar
Zhang, Liangang committed
561
562
        if self.device == "cuda":
            backend = "nccl"
563
        elif self.device == "xpu":
564
            backend = "xccl"
565
566
        elif self.device == "hpu":
            backend = "hccl"
567
568
        elif self.device == "cpu":
            backend = "gloo"
569
570
        elif self.device == "npu":
            backend = "hccl"
571

572
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
573
        if not self.server_args.enable_p2p_check:
574
575
            monkey_patch_p2p_access_check()

576
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
577
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
578
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
579
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
580
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
581
        set_mscclpp_all_reduce(self.server_args.enable_mscclpp)
582
583

        if not self.is_draft_worker:
584
585
586
587
            if self.device == "cpu":
                if _is_cpu_amx_available:
                    # Bind OpenMP threads to CPU cores
                    torch.ops.sgl_kernel.init_cpu_threads_env(self.local_omp_cpuid)
588
589
590
591

                    # Set local size to hint SGLang to use shared memory based AllReduce
                    os.environ["LOCAL_SIZE"] = str(self.tp_size)
                    torch.ops.sgl_kernel.initialize(self.tp_size, self.tp_rank)
592
593
                else:
                    logger.warning(
594
                        "init_cpu_threads_env and shared memory based AllReduce is disabled since intel amx backend is not available"
595
596
                    )

Mick's avatar
Mick committed
597
            # Only initialize the distributed environment on the target model worker.
598
599
            init_distributed_environment(
                backend=backend,
600
601
                world_size=self.tp_size * self.pp_size,
                rank=self.tp_size * self.pp_rank + self.tp_rank,
602
603
                local_rank=self.gpu_id,
                distributed_init_method=dist_init_method,
604
                timeout=self.server_args.dist_timeout,
605
            )
606
607
608
            initialize_model_parallel(
                tensor_model_parallel_size=self.tp_size,
                pipeline_model_parallel_size=self.pp_size,
Cheng Wan's avatar
Cheng Wan committed
609
                expert_model_parallel_size=self.moe_ep_size,
610
                duplicate_tp_group=self.server_args.enable_pdmux,
611
            )
612
            initialize_dp_attention(
613
614
                server_args=self.server_args,
                model_config=self.model_config,
615
            )
616

617
        min_per_gpu_memory = get_available_gpu_memory(
618
619
620
621
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
622
        )
623
        self.tp_group = get_tp_group()
624
        self.attention_tp_group = get_attention_tp_group()
625

626
        # Check memory for tensor parallelism
627
        local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
628
        if self.tp_size > 1 and not self.is_draft_worker:
629
            if min_per_gpu_memory < local_gpu_memory * 0.9:
630
631
632
633
634
635
636
637
638
639
                if get_bool_env_var("SGL_DISABLE_TP_MEMORY_INBALANCE_CHECK"):
                    logger.warning(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
                else:
                    raise ValueError(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
640

641
642
643
        logger.info(
            f"Init torch distributed ends. mem usage={(before_avail_memory - local_gpu_memory):.2f} GB"
        )
644
        return min_per_gpu_memory
645

Lianmin Zheng's avatar
Lianmin Zheng committed
646
    def load_model(self):
647
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
648
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
649
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
650
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
651
652

        # This can reduce thread conflicts and speed up weight loading.
653
654
        if self.device != "cpu":
            torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
655
656
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
657
658
659
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
Zhang, Liangang's avatar
Zhang, Liangang committed
660
                self.server_args.dtype = "float16"
661
                self.model_config.dtype = torch.float16
Zhang, Liangang's avatar
Zhang, Liangang committed
662
663
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
664

665
666
        set_cuda_arch()

667
        # Prepare the model config
668
669
670
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
671
            model_loader_extra_config=self.server_args.model_loader_extra_config,
672
        )
673
674
675
676
        if self.device == "cpu":
            self.model_config = adjust_config_with_unaligned_cpu_tp(
                self.model_config, self.load_config, self.tp_size
            )
677
678
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
679
680

        # Load the model
681
682
        # Remove monkey_patch when linear.py quant remove dependencies with vllm
        monkey_patch_vllm_parallel_state()
683
684
        monkey_patch_isinstance_for_vllm_base_layer()

685
        with self.memory_saver_adapter.region(GPU_MEMORY_TYPE_WEIGHTS):
686
687
688
689
690
            self.model = get_model(
                model_config=self.model_config,
                load_config=self.load_config,
                device_config=DeviceConfig(self.device),
            )
691
        monkey_patch_vllm_parallel_state(reverse=True)
692
        monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
693

694
695
        get_offloader().post_init()

bjmsong's avatar
bjmsong committed
696
697
698
699
700
701
        if self.server_args.kv_cache_dtype == "fp8_e4m3":
            if self.server_args.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.server_args.quantization_param_path
                    )
702
703
704
705
                    logger.info(
                        "Loaded KV cache scaling factors from %s",
                        self.server_args.quantization_param_path,
                    )
bjmsong's avatar
bjmsong committed
706
707
708
709
710
711
712
713
714
715
716
717
718
                else:
                    raise RuntimeError(
                        "Using FP8 KV cache and scaling factors provided but "
                        "model %s does not support loading scaling factors.",
                        self.model.__class__,
                    )
            else:
                logger.warning(
                    "Using FP8 KV cache but no scaling factors "
                    "provided. Defaulting to scaling factors of 1.0. "
                    "This may lead to less accurate results!"
                )

719
        # Parse other args
Hanming Lu's avatar
Hanming Lu committed
720
721
722
723
724
        self.sliding_window_size = None
        if hasattr(self.model, "get_attention_sliding_window_size"):
            self.sliding_window_size = self.model.get_attention_sliding_window_size()
        elif self.model_config.attention_chunk_size is not None:
            self.sliding_window_size = self.model_config.attention_chunk_size
725
            logger.info(
Hanming Lu's avatar
Hanming Lu committed
726
727
728
                f"Setting sliding_window_size to be attention_chunk_size: {self.sliding_window_size}"
            )

729
        self.dtype = self.model_config.dtype
730

731
        after_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
732
        self.weight_load_mem_usage = before_avail_memory - after_avail_memory
733
        logger.info(
734
            f"Load weight end. "
735
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
736
            f"dtype={self.dtype}, "
737
            f"avail mem={after_avail_memory:.2f} GB, "
738
            f"mem usage={self.weight_load_mem_usage:.2f} GB."
739
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
740

741
742
743
744
745
746
747
748
749
750
751
752
        # Handle the case where some ranks do not finish loading.
        try:
            dist.monitored_barrier(
                group=get_tp_group().cpu_group,
                timeout=datetime.timedelta(seconds=UNBALANCED_MODEL_LOADING_TIMEOUT_S),
                wait_all_ranks=True,
            )
        except RuntimeError:
            raise ValueError(
                f"TP rank {self.tp_rank} could finish the model loading, but there are other ranks that didn't finish loading. It is likely due to unexpected failures (e.g., OOM) or a slow node."
            ) from None

753
    def update_expert_location(
754
755
756
        self,
        new_expert_location_metadata: ExpertLocationMetadata,
        update_layer_ids: List[int],
757
    ):
758
        self.expert_location_updater.update(
759
760
            self.model.routed_experts_weights_of_layer,
            new_expert_location_metadata,
761
            update_layer_ids=update_layer_ids,
762
763
764
765
            nnodes=self.server_args.nnodes,
            rank=self.tp_rank,
        )

766
767
768
769
    def update_weights_from_disk(
        self, model_path: str, load_format: str
    ) -> tuple[bool, str]:
        """Update engine weights in-place from the disk."""
770
        logger.info(
Chayenne's avatar
Chayenne committed
771
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
772
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
773
774
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
775
        target_device = torch.device(self.device)
776
        self.model_config.model_path = model_path
777
778
        load_config = LoadConfig(load_format=load_format)

Lianmin Zheng's avatar
Lianmin Zheng committed
779
        # Only support DefaultModelLoader for now
780
781
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
782
783
            message = f"Failed to get model loader: {loader}."
            return False, message
784
785
786

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
787
                DefaultModelLoader.Source.init_new(config, self.model)
788
789
790
791
            )
            return iter

        def model_load_weights(model, iter):
792
            DefaultModelLoader.load_weights_and_postprocess(model, iter, target_device)
793
794
            return model

795
        with set_default_torch_dtype(self.model_config.dtype):
796
            try:
797
                iter = get_weight_iter(self.model_config)
798
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
799
                message = f"Failed to get weights iterator: {e}."
800
801
802
803
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
804
805
806
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
807
808
                del iter
                gc.collect()
809
                iter = get_weight_iter(self.model_config)
810
811
812
813
814
815
816
817
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.load_config = load_config

818
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
819
        return True, "Succeeded to update model weights."
820

821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
    def init_weights_update_group(
        self,
        master_address,
        master_port,
        rank_offset,
        world_size,
        group_name,
        backend="nccl",
    ):
        """Initialize the Torch process group for model parameter updates.

        `_model_update_group` is used in the RLHF workflow, where rank
        0 is the actor model in the training engine, and the other ranks are
        the inference engine, which is used for rollout.

        In the RLHF workflow, the training engine updates the model
        weights/parameters online, and broadcasts them to the inference
        engine through the `_model_update_group` process group.
        """
        assert (
            torch.distributed.is_initialized()
        ), "Default torch process group must be initialized"
        assert group_name != "", "Group name cannot be empty"

        rank = rank_offset + self.tp_rank

        logger.info(
            f"init custom process group: master_address={master_address}, master_port={master_port}, "
849
            f"rank_offset={rank_offset}, rank={rank}, world_size={world_size}, group_name={group_name}, backend={backend}"
850
851
852
        )

        try:
853
            self._model_update_group[group_name] = init_custom_process_group(
854
855
856
857
858
859
860
861
862
863
864
865
                backend=backend,
                init_method=f"tcp://{master_address}:{master_port}",
                world_size=world_size,
                rank=rank,
                group_name=group_name,
            )
            return True, "Succeeded to initialize custom process group."
        except Exception as e:
            message = f"Failed to initialize custom process group: {e}."
            logger.error(message)
            return False, message

866
    def update_weights_from_distributed(self, names, dtypes, shapes, group_name):
867
868
869
870
871
872
873
874
875
876
        """
        Update specific parameter in the model weights online
        through `_model_update_group` process group.

        Args:
            name: the name of the parameter to be updated.
            dtype: the data type of the parameter to be updated.
            shape: the shape of the parameter to be updated.
        """

877
878
879
880
        assert group_name in self._model_update_group, (
            f"Group {group_name} not in {list(self._model_update_group.keys())}. "
            "Please call `init_weights_update_group` first."
        )
881
882

        try:
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
            weights = []
            handles = []
            for name, dtype, shape in zip(names, dtypes, shapes):
                target_dtype = (
                    dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
                )
                weight = torch.empty(shape, dtype=target_dtype, device=self.device)
                handles.append(
                    torch.distributed.broadcast(
                        weight,
                        src=0,
                        group=self._model_update_group[group_name],
                        async_op=True,
                    )
                )
                weights.append((name, weight))
            for handle in handles:
                handle.wait()

            self.model.load_weights(weights)
            return True, f"Succeeded to update parameter online."
904
905
906
907
908
909
910
911
912
913

        except Exception as e:
            error_msg = (
                f"Failed to update parameter online: {e}. "
                f"The full weights of the ModelRunner are partially updated. "
                f"Please discard the whole weights."
            )
            logger.error(error_msg)
            return False, error_msg

914
915
916
917
918
    def update_weights_from_tensor(
        self,
        named_tensors: List[Tuple[str, Union[torch.Tensor, "LocalSerializedTensor"]]],
        load_format: Optional[str] = None,
    ):
919
        monkey_patch_torch_reductions()
920
921
922
923
924
925
        if load_format == "flattened_bucket":
            # Handle flattened bucket format
            return self._update_weights_from_flattened_bucket(
                flattened_tensor_bucket_dict=named_tensors
            )

926
        # We need to get device after patch otherwise the device would be wrong
927
928
        self.device_module = torch.get_device_module(self.device)
        infered_device = self.device_module.current_device()
929

930
        named_tensors = [
931
            (name, _unwrap_tensor(tensor, tp_rank=self.tp_rank, device=infered_device))
932
933
934
935
            for name, tensor in named_tensors
        ]
        if load_format == "direct":
            _model_load_weights_direct(self.model, named_tensors)
936
937
938
        elif load_format in self.server_args.custom_weight_loader:
            custom_loader = dynamic_import(load_format)
            custom_loader(self.model, named_tensors)
939
940
941
942
        elif load_format is None:
            self.model.load_weights(named_tensors)
        else:
            raise NotImplementedError(f"Unknown load_format={load_format}")
943
        return True, "Success"
944

945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
    def _update_weights_from_flattened_bucket(
        self,
        flattened_tensor_bucket_dict,
    ):
        """Handle flattened bucket format for weight updates"""
        flattened_tensor = flattened_tensor_bucket_dict["flattened_tensor"]
        metadata = flattened_tensor_bucket_dict["metadata"]

        # Convert metadata dict to our format
        converted_metadata = []
        for meta in metadata:
            converted_meta = FlattenedTensorMetadata(
                name=meta.name,
                shape=meta.shape,
                dtype=meta.dtype,
                start_idx=meta.start_idx,
                end_idx=meta.end_idx,
                numel=meta.numel,
            )
            converted_metadata.append(converted_meta)

        # Create bucket and reconstruct tensors
        bucket = FlattenedTensorBucket(
            flattened_tensor=flattened_tensor, metadata=converted_metadata
        )
        reconstructed_tensors = bucket.reconstruct_tensors()

        # Load the reconstructed tensors using the standard method
        self.model.load_weights(reconstructed_tensors)

        return True, "Success"

977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

994
995
996
997
998
999
1000
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
1001
            lora_backend=self.server_args.lora_backend,
1002
1003
            tp_size=self.tp_size,
            tp_rank=self.tp_rank,
1004
1005
            max_lora_rank=self.server_args.max_lora_rank,
            target_modules=self.server_args.lora_target_modules,
1006
            lora_paths=self.server_args.lora_paths,
1007
        )
1008

1009
    def load_lora_adapter(self, lora_ref: LoRARef):
1010
1011
1012
        """Load a new lora adapter from disk or huggingface."""

        logger.info(
1013
            f"LoRA adapter loading starts: {lora_ref}. "
1014
1015
1016
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

1017
        result = self.lora_manager.load_lora_adapter(lora_ref)
1018
1019

        logger.info(
1020
            f"LoRA adapter loading completes: {lora_ref}. "
1021
1022
1023
1024
1025
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

        return result

1026
    def unload_lora_adapter(self, lora_ref: LoRARef):
1027
1028
1029
        """Unload a lora adapter that was previously loaded during initialization or dynamic loading."""

        logger.info(
1030
            f"LoRA adapter unloading starts: {lora_ref}. "
1031
1032
1033
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

1034
        result = self.lora_manager.unload_lora_adapter(lora_ref)
1035
1036

        logger.info(
1037
            f"LoRA adapter unloading completes: {lora_ref}. "
1038
1039
1040
1041
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

        return result
1042

1043
    def profile_max_num_token(self, total_gpu_memory: int):
1044
        available_gpu_memory = get_available_gpu_memory(
1045
1046
1047
1048
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
1049
        )
1050
1051
1052
1053
1054
        if self.is_draft_worker:
            num_layers = getattr(
                self.model_config.hf_config,
                "num_nextn_predict_layers",
                self.num_effective_layers,
1055
            )
1056
1057
1058
        else:
            num_layers = self.num_effective_layers
        if self.use_mla_backend:
1059
1060
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
1061
                * num_layers
1062
                * torch._utils._element_size(self.kv_cache_dtype)
1063
1064
1065
            )
        else:
            cell_size = (
1066
                self.model_config.get_num_kv_heads(get_attention_tp_size())
1067
                * self.model_config.head_dim
1068
                * num_layers
1069
                * 2
1070
                * torch._utils._element_size(self.kv_cache_dtype)
1071
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
1072
1073
1074
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
1075
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
1076
1077
        return max_num_token

tarinkk's avatar
tarinkk committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
    def set_num_token_hybrid(self):
        if (
            "Llama4ForConditionalGeneration"
            in self.model_config.hf_config.architectures
        ):
            temp_ratio = (
                (1 - self.is_hybrid)
                + self.is_hybrid
                * self.attention_chunk_size
                / self.model_config.context_len
            )
            self.swa_max_total_num_tokens = (
                4 * self.max_total_num_tokens * temp_ratio // (3 * temp_ratio + 1)
            )
            self.full_max_total_num_tokens = (
                4 * self.max_total_num_tokens
                - 12 * self.max_total_num_tokens * temp_ratio // (3 * temp_ratio + 1)
            )
            self.swa_max_total_num_tokens = int(
                self.swa_max_total_num_tokens
                // self.server_args.page_size
                * self.server_args.page_size
            )
            self.full_max_total_num_tokens = int(
                self.full_max_total_num_tokens
                // self.server_args.page_size
                * self.server_args.page_size
            )
            self.max_total_num_tokens = self.full_max_total_num_tokens
        else:
Hanming Lu's avatar
Hanming Lu committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
            assert self.sliding_window_size is not None and self.sliding_window_size > 0
            full_attention_layer_ids = []
            swa_attention_layer_ids = []

            try:
                layers = self.model.model.layers
            except:
                try:
                    layers = self.model.language_model.model.layers
                except:
1118
1119
1120
1121
1122
                    try:
                        layers = self.model.language_model.layers
                    except:
                        self.is_hybrid = False
                        return
Hanming Lu's avatar
Hanming Lu committed
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157

            for layer in layers:
                if (
                    layer.self_attn.attn.sliding_window_size is None
                    or layer.self_attn.attn.sliding_window_size == -1
                ):
                    full_attention_layer_ids.append(layer.layer_id)
                else:
                    swa_attention_layer_ids.append(layer.layer_id)
            self.model_config.swa_attention_layer_ids = swa_attention_layer_ids
            self.model_config.full_attention_layer_ids = full_attention_layer_ids

            # Algorithm:
            # Existing max_total_num_tokens is per layer and assume all layers have the same number of tokens.
            # - Find total # of tokens available across layers.
            # - Calculate full_max_total_num_tokens and swa_max_total_num_tokens based on the given swa_full_tokens_ratio.
            total_tokens = (
                self.max_total_num_tokens * self.model_config.num_hidden_layers
            )
            full_layers_num = len(full_attention_layer_ids)
            swa_layers_num = len(swa_attention_layer_ids)
            swa_full_tokens_ratio = self.server_args.swa_full_tokens_ratio

            # Solve the equations:
            # 1. swa_max_total_num_tokens * swa_layers_num + full_max_total_num_tokens * full_layers_num == total_tokens
            # 2. full_max_total_num_tokens * swa_full_tokens_ratio == swa_max_total_num_tokens
            denominator = swa_full_tokens_ratio * swa_layers_num + full_layers_num
            self.full_max_total_num_tokens = int(total_tokens / denominator)
            self.swa_max_total_num_tokens = int(
                self.full_max_total_num_tokens * swa_full_tokens_ratio
            )
            self.max_total_num_tokens = self.full_max_total_num_tokens

            logger.info(
                f"Use Sliding window memory pool. full_layer_tokens={self.full_max_total_num_tokens}, swa_layer_tokens={self.swa_max_total_num_tokens}"
tarinkk's avatar
tarinkk committed
1158
1159
            )

1160
    def init_memory_pool(
1161
1162
        self,
        total_gpu_memory: int,
1163
1164
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
1165
    ):
Lianmin Zheng's avatar
Lianmin Zheng committed
1166
        # Determine the kv cache dtype
1167
1168
1169
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
1170
            if _is_hip:  # Using natively supported format
HAI's avatar
HAI committed
1171
1172
1173
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
bjmsong's avatar
bjmsong committed
1174
        elif self.server_args.kv_cache_dtype == "fp8_e4m3":
1175
1176
1177
            if _is_hip:  # Using natively supported format
                self.kv_cache_dtype = torch.float8_e4m3fnuz
            else:
bjmsong's avatar
bjmsong committed
1178
                self.kv_cache_dtype = torch.float8_e4m3fn
1179
1180
1181
1182
1183
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

1184
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
Lianmin Zheng's avatar
Lianmin Zheng committed
1185
1186
        if SGLANG_CI_SMALL_KV_SIZE:
            self.max_total_num_tokens = int(SGLANG_CI_SMALL_KV_SIZE)
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

        if max_num_reqs is None:
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
                4096,
            )

        if not self.spec_algorithm.is_none():
            if self.is_draft_worker:
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
1202
                max_num_reqs = self.server_args.max_num_reqs
1203
            else:
1204
1205
                # We are sharing the `token_to_kv_pool`, and both verify and draft tokens
                # can be concurrently allocated, so we should give a headroom for it.
1206
1207
                self.server_args.draft_runner_cache_size = (
                    self.max_total_num_tokens
1208
1209
1210
1211
1212
1213
1214
                    # draft
                    + max_num_reqs
                    * self.server_args.speculative_num_steps
                    * self.server_args.speculative_eagle_topk
                    # verify
                    + max_num_reqs * self.server_args.speculative_num_draft_tokens
                    # buffer
1215
1216
                    + 100
                )
1217
1218
1219
1220
                # Target worker and draft worker shares the same indices for the
                # token_to_kv_pool, so we should make sure to match max_total_num_tokens.
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
                self.server_args.max_num_reqs = max_num_reqs
1221

1222
1223
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
1224
                logging.warning(
1225
1226
1227
1228
1229
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
1230

1231
1232
1233
1234
1235
        self.max_total_num_tokens = (
            self.max_total_num_tokens
            // self.server_args.page_size
            * self.server_args.page_size
        )
tarinkk's avatar
tarinkk committed
1236
1237
1238
1239
        # create token size for hybrid cache
        if self.is_hybrid:
            self.set_num_token_hybrid()

1240
        if self.max_total_num_tokens <= 0:
1241
            raise RuntimeError(
1242
                "Not enough memory. Please try to increase --mem-fraction-static."
1243
            )
1244

Lianmin Zheng's avatar
Lianmin Zheng committed
1245
        # Initialize req_to_token_pool
1246
        if self.req_to_token_pool is None:
1247
1248
1249
1250
1251
            # FIXME(lsyin): this is the temporary fix for the context length issue when using speculative decoding
            extra_max_context_len = 4
            if self.server_args.speculative_num_draft_tokens is not None:
                extra_max_context_len += self.server_args.speculative_num_draft_tokens

Byron Hsu's avatar
Byron Hsu committed
1252
1253
1254
1255
1256
1257
1258
1259
            if self.server_args.disaggregation_mode == "decode":
                from sglang.srt.disaggregation.decode import DecodeReqToTokenPool

                # subscribe memory for pre-allocated requests
                # if max_num_reqs <= 32, we pre-allocate 2x requests
                pre_alloc_size = max_num_reqs * 2 if max_num_reqs <= 32 else 0
                self.req_to_token_pool = DecodeReqToTokenPool(
                    size=max_num_reqs,
1260
1261
                    max_context_len=self.model_config.context_len
                    + extra_max_context_len,
Byron Hsu's avatar
Byron Hsu committed
1262
1263
1264
1265
1266
1267
1268
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    pre_alloc_size=pre_alloc_size,
                )
            else:
                self.req_to_token_pool = ReqToTokenPool(
                    size=max_num_reqs,
1269
1270
                    max_context_len=self.model_config.context_len
                    + extra_max_context_len,
Byron Hsu's avatar
Byron Hsu committed
1271
1272
1273
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                )
1274
1275
1276
1277
        else:
            # Draft worker shares req_to_token_pool with the target worker.
            assert self.is_draft_worker

Lianmin Zheng's avatar
Lianmin Zheng committed
1278
        # Initialize token_to_kv_pool
Lianmin Zheng's avatar
Lianmin Zheng committed
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        if self.server_args.attention_backend == "ascend":
            if self.use_mla_backend:
                self.token_to_kv_pool = AscendMLAPagedTokenToKVPool(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    kv_lora_rank=self.model_config.kv_lora_rank,
                    qk_rope_head_dim=self.model_config.qk_rope_head_dim,
                    layer_num=self.num_effective_layers,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    start_layer=self.start_layer,
                    end_layer=self.end_layer,
                )
            else:
                self.token_to_kv_pool = AscendTokenToKVPool(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    head_num=self.model_config.get_num_kv_heads(
                        get_attention_tp_size()
                    ),
                    head_dim=self.model_config.head_dim,
                    layer_num=self.model_config.num_hidden_layers,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                )
1306
        elif self.use_mla_backend:
1307
1308
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
1309
                page_size=self.page_size,
1310
                dtype=self.kv_cache_dtype,
1311
1312
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
1313
                layer_num=self.num_effective_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
1314
                device=self.device,
1315
                enable_memory_saver=self.server_args.enable_memory_saver,
1316
1317
                start_layer=self.start_layer,
                end_layer=self.end_layer,
1318
            )
Shuo Yang's avatar
Shuo Yang committed
1319
1320
1321
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
1322
                page_size=self.page_size,
Shuo Yang's avatar
Shuo Yang committed
1323
                dtype=self.kv_cache_dtype,
1324
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
Shuo Yang's avatar
Shuo Yang committed
1325
                head_dim=self.model_config.head_dim,
1326
                layer_num=self.num_effective_layers,
Shuo Yang's avatar
Shuo Yang committed
1327
1328
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
1329
                enable_memory_saver=self.server_args.enable_memory_saver,
1330
1331
                start_layer=self.start_layer,
                end_layer=self.end_layer,
Shuo Yang's avatar
Shuo Yang committed
1332
            )
1333
        else:
tarinkk's avatar
tarinkk committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
            if self.is_hybrid:
                self.token_to_kv_pool = SWAKVPool(
                    size=self.full_max_total_num_tokens,
                    size_swa=self.swa_max_total_num_tokens,
                    dtype=self.kv_cache_dtype,
                    head_num=self.model_config.get_num_kv_heads(
                        get_attention_tp_size()
                    ),
                    head_dim=self.model_config.head_dim,
                    swa_attention_layer_ids=self.model_config.swa_attention_layer_ids,
                    full_attention_layer_ids=self.model_config.full_attention_layer_ids,
                    enable_kvcache_transpose=False,
                    device=self.device,
                )
            else:
                self.token_to_kv_pool = MHATokenToKVPool(
Lianmin Zheng's avatar
Lianmin Zheng committed
1350
                    self.max_total_num_tokens,
tarinkk's avatar
tarinkk committed
1351
                    page_size=self.page_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
1352
                    dtype=self.kv_cache_dtype,
tarinkk's avatar
tarinkk committed
1353
1354
1355
1356
1357
                    head_num=self.model_config.get_num_kv_heads(
                        get_attention_tp_size()
                    ),
                    head_dim=self.model_config.head_dim,
                    layer_num=self.num_effective_layers,
Lianmin Zheng's avatar
Lianmin Zheng committed
1358
                    device=self.device,
tarinkk's avatar
tarinkk committed
1359
1360
1361
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    start_layer=self.start_layer,
                    end_layer=self.end_layer,
Lianmin Zheng's avatar
Lianmin Zheng committed
1362
                )
tarinkk's avatar
tarinkk committed
1363

Lianmin Zheng's avatar
Lianmin Zheng committed
1364
        # Initialize token_to_kv_pool_allocator
Lianmin Zheng's avatar
Lianmin Zheng committed
1365
        need_sort = self.server_args.disaggregation_mode in ("decode", "prefill")
tarinkk's avatar
tarinkk committed
1366
        if self.token_to_kv_pool_allocator is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
            if self.server_args.attention_backend == "ascend":
                self.token_to_kv_pool_allocator = AscendPagedTokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                    need_sort=need_sort,
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
1376
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
                if self.page_size == 1:
                    if self.is_hybrid:
                        self.token_to_kv_pool_allocator = SWATokenToKVPoolAllocator(
                            self.full_max_total_num_tokens,
                            self.swa_max_total_num_tokens,
                            dtype=self.kv_cache_dtype,
                            device=self.device,
                            kvcache=self.token_to_kv_pool,
                            need_sort=need_sort,
                        )
                    else:
                        self.token_to_kv_pool_allocator = TokenToKVPoolAllocator(
                            self.max_total_num_tokens,
                            dtype=self.kv_cache_dtype,
                            device=self.device,
                            kvcache=self.token_to_kv_pool,
                            need_sort=need_sort,
                        )
1395
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1396
1397
                    assert not self.is_hybrid
                    self.token_to_kv_pool_allocator = PagedTokenToKVPoolAllocator(
1398
1399
1400
1401
1402
                        self.max_total_num_tokens,
                        page_size=self.page_size,
                        dtype=self.kv_cache_dtype,
                        device=self.device,
                        kvcache=self.token_to_kv_pool,
Lianmin Zheng's avatar
Lianmin Zheng committed
1403
                        need_sort=need_sort,
1404
                    )
1405
1406
1407
        else:
            assert self.is_draft_worker

1408
        logger.info(
1409
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
1410
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
1411
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1412

Lianmin Zheng's avatar
Lianmin Zheng committed
1413
1414
1415
1416
1417
1418
1419
1420
1421
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

1422
1423
    def init_attention_backend(self):
        """Init attention kernel backend."""
1424
        if self.server_args.enable_two_batch_overlap and not self.is_draft_worker:
1425
1426
1427
1428
1429
            self.attn_backend = TboAttnBackend.init_new(self._get_attention_backend)
        else:
            self.attn_backend = self._get_attention_backend()

    def _get_attention_backend(self):
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
        """Init attention kernel backend."""
        self.decode_attention_backend_str = (
            self.server_args.decode_attention_backend
            if self.server_args.decode_attention_backend
            else self.server_args.attention_backend
        )
        self.prefill_attention_backend_str = (
            self.server_args.prefill_attention_backend
            if self.server_args.prefill_attention_backend
            else self.server_args.attention_backend
        )
        if self.decode_attention_backend_str != self.prefill_attention_backend_str:
            assert (
                self.server_args.speculative_algorithm is None
            ), "Currently HybridAttentionBackend does not support speculative decoding."
            from sglang.srt.layers.attention.hybrid_attn_backend import (
                HybridAttnBackend,
            )

            attn_backend = HybridAttnBackend(
                decode_backend=self._get_attention_backend_from_str(
                    self.decode_attention_backend_str
                ),
                prefill_backend=self._get_attention_backend_from_str(
                    self.prefill_attention_backend_str
                ),
            )
            logger.info(
                f"Using hybrid attention backend for decode and prefill: "
                f"decode_backend={self.decode_attention_backend_str}, "
                f"prefill_backend={self.prefill_attention_backend_str}."
            )
            logger.warning(
                f"Warning: Attention backend specified by --attention-backend or default backend might be overridden."
                f"The feature of hybrid attention backend is experimental and unstable. Please raise an issue if you encounter any problem."
            )
        else:
            attn_backend = self._get_attention_backend_from_str(
                self.server_args.attention_backend
            )

        global_server_args_dict.update(
            {
                "decode_attention_backend": self.decode_attention_backend_str,
                "prefill_attention_backend": self.prefill_attention_backend_str,
            }
        )
        return attn_backend

    def _get_attention_backend_from_str(self, backend_str: str):
        if backend_str == "flashinfer":
1481
1482
1483
1484
            if not self.use_mla_backend:
                from sglang.srt.layers.attention.flashinfer_backend import (
                    FlashInferAttnBackend,
                )
1485

1486
1487
                # Init streams
                if self.server_args.speculative_algorithm == "EAGLE":
1488
1489
1490
1491
1492
                    if (
                        not hasattr(self, "plan_stream_for_flashinfer")
                        or not self.plan_stream_for_flashinfer
                    ):
                        self.plan_stream_for_flashinfer = torch.cuda.Stream()
1493
                return FlashInferAttnBackend(self)
1494
1495
1496
1497
1498
            else:
                from sglang.srt.layers.attention.flashinfer_mla_backend import (
                    FlashInferMLAAttnBackend,
                )

1499
                return FlashInferMLAAttnBackend(self)
1500
        elif backend_str == "aiter":
1501
1502
            from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend

1503
            return AiterAttnBackend(self)
1504
1505
1506
1507
        elif self.server_args.attention_backend == "wave":
            from sglang.srt.layers.attention.wave_backend import WaveAttnBackend

            return WaveAttnBackend(self)
1508
        elif backend_str == "ascend":
1509
1510
1511
            from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend

            return AscendAttnBackend(self)
1512
        elif backend_str == "triton":
1513
1514
1515
1516
1517
            assert not self.model_config.is_encoder_decoder, (
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            if self.server_args.enable_double_sparsity:
1518
1519
1520
1521
                from sglang.srt.layers.attention.double_sparsity_backend import (
                    DoubleSparseAttnBackend,
                )

1522
                return DoubleSparseAttnBackend(self)
1523
            else:
1524
1525
                from sglang.srt.layers.attention.triton_backend import TritonAttnBackend

1526
                return TritonAttnBackend(self)
1527
        elif backend_str == "torch_native":
1528
1529
1530
1531
            from sglang.srt.layers.attention.torch_native_backend import (
                TorchNativeAttnBackend,
            )

1532
            return TorchNativeAttnBackend(self)
1533
        elif backend_str == "flashmla":
lukec's avatar
lukec committed
1534
1535
            from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend

1536
            return FlashMLABackend(self)
1537
        elif backend_str == "fa3":
1538
1539
1540
1541
            assert (
                torch.cuda.get_device_capability()[0] == 8 and not self.use_mla_backend
            ) or torch.cuda.get_device_capability()[0] == 9, (
                "FlashAttention v3 Backend requires SM>=80 and SM<=90. "
1542
1543
1544
1545
1546
1547
                "Please use `--attention-backend flashinfer`."
            )
            from sglang.srt.layers.attention.flashattention_backend import (
                FlashAttentionBackend,
            )

1548
            return FlashAttentionBackend(self)
1549
        elif backend_str == "cutlass_mla":
1550
1551
1552
1553
            from sglang.srt.layers.attention.cutlass_mla_backend import (
                CutlassMLABackend,
            )

1554
            return CutlassMLABackend(self)
1555
        elif backend_str == "trtllm_mla":
1556
1557
1558
1559
1560
            if not self.use_mla_backend:
                raise ValueError("trtllm_mla backend can only be used with MLA models.")
            from sglang.srt.layers.attention.trtllm_mla_backend import TRTLLMMLABackend

            return TRTLLMMLABackend(self)
1561
        elif backend_str == "trtllm_mha":
1562
1563
1564
1565
1566
1567
1568
1569
1570
            if self.use_mla_backend:
                raise ValueError(
                    "trtllm_mha backend can only be used with non-MLA models."
                )
            from sglang.srt.layers.attention.trtllm_mha_backend import (
                TRTLLMHAAttnBackend,
            )

            return TRTLLMHAAttnBackend(self)
1571
        elif backend_str == "intel_amx":
1572
1573
1574
1575
1576
            from sglang.srt.layers.attention.intel_amx_backend import (
                IntelAMXAttnBackend,
            )

            return IntelAMXAttnBackend(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
1577
        elif backend_str == "dual_chunk_flash_attn":
1578
1579
1580
1581
1582
            from sglang.srt.layers.attention.dual_chunk_flashattention_backend import (
                DualChunkFlashAttentionBackend,
            )

            return DualChunkFlashAttentionBackend(self)
1583
        else:
1584
            raise ValueError(f"Invalid attention backend: {backend_str}")
1585

Shuo Yang's avatar
Shuo Yang committed
1586
1587
1588
1589
1590
1591
1592
    def init_double_sparsity_channel_config(self, selected_channel):
        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

1593
        for i in range(self.start_layer, self.end_layer):
Shuo Yang's avatar
Shuo Yang committed
1594
1595
1596
1597
1598
1599
1600
1601
1602
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

1603
    def init_device_graphs(self):
1604
        """Capture cuda graphs."""
1605
        self.graph_runner = None
1606
        self.cuda_graph_mem_usage = 0
1607

1608
        if not self.is_generation:
1609
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
1610
1611
            return

1612
1613
        if self.server_args.disable_cuda_graph:
            return
1614

1615
        tic = time.perf_counter()
1616
        before_mem = get_available_gpu_memory(self.device, self.gpu_id)
1617
        logger.info(
1618
            f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
1619
        )
1620
1621
1622
        self.graph_runner = (
            CudaGraphRunner(self) if not _is_npu else NPUGraphRunner(self)
        )
1623
        after_mem = get_available_gpu_memory(self.device, self.gpu_id)
1624
        self.cuda_graph_mem_usage = before_mem - after_mem
1625
        logger.info(
1626
            f"Capture cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. "
1627
            f"mem usage={self.cuda_graph_mem_usage:.2f} GB. avail mem={after_mem:.2f} GB."
1628
        )
1629

1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
    def init_threads_binding(self):
        omp_cpuids = os.environ.get("SGLANG_CPU_OMP_THREADS_BIND", "all")
        if omp_cpuids == "all":
            cpu_ids_by_node = get_cpu_ids_by_node()
            n_numa_node = len(cpu_ids_by_node)

            assert self.tp_size <= n_numa_node, (
                f"SGLANG_CPU_OMP_THREADS_BIND is not set, in this case, "
                f"tp_size {self.tp_size} should be smaller than or equal to number of numa node on the machine {n_numa_node}. "
                f"If you need tp_size to be larger than number of numa node, please set the CPU cores for each tp rank via SGLANG_CPU_OMP_THREADS_BIND explicitly. "
                f"For example, on a machine with 2 numa nodes, where core 0-31 are on numa node 0 and core 32-63 are on numa node 1, "
                f"it is suggested to use -tp 2 and bind tp rank 0 to core 0-31 and tp rank 1 to core 32-63. "
                f"This is the default behavior if SGLANG_CPU_OMP_THREADS_BIND is not set and it is the same as setting SGLANG_CPU_OMP_THREADS_BIND=0-31|32-63. "
                f"If you do need tp_size to be larger than the number of numa nodes, you could set SGLANG_CPU_OMP_THREADS_BIND explicitly for example SGLANG_CPU_OMP_THREADS_BIND=0-15|16-31|32-47|48-63 and run with -tp 4. "
                f"If you don't want each tp rank to use all the cores on one numa node, you could set for example SGLANG_CPU_OMP_THREADS_BIND=0-15|32-47 and run with -tp 2."
            )
            if self.tp_size < n_numa_node:
                logger.warning(
                    f"Detected the current machine has {n_numa_node} numa nodes available, but tp_size is set to {self.tp_size}, so only {self.tp_size} numa nodes are used."
                )
            self.local_omp_cpuid = cpu_ids_by_node[self.tp_rank]
        else:
            self.local_omp_cpuid = omp_cpuids.split("|")[self.tp_rank]

1654
    def apply_torch_tp(self):
1655
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
1656
1657
1658
1659
1660
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

1661
    def forward_decode(
Cheng Wan's avatar
Cheng Wan committed
1662
1663
1664
1665
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors=None,
1666
    ) -> LogitsProcessorOutput:
Cheng Wan's avatar
Cheng Wan committed
1667
1668
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)
1669
1670
1671
1672
        # FIXME: add pp_proxy_tensors arg to all models
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
1673
        return self.model.forward(
1674
1675
1676
1677
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
Lianmin Zheng's avatar
Lianmin Zheng committed
1678
1679
        )

1680
    def forward_extend(
1681
1682
1683
1684
1685
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors=None,
    ) -> LogitsProcessorOutput:
1686
1687
1688
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)

1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
        if forward_batch.input_embeds is not None:
            kwargs["input_embeds"] = forward_batch.input_embeds.bfloat16()
        if not self.is_generation:
            kwargs["get_embedding"] = True
        return self.model.forward(
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1702

1703
1704
1705
1706
1707
1708
    def forward_idle(
        self, forward_batch: ForwardBatch, pp_proxy_tensors=None
    ) -> LogitsProcessorOutput:
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
Ke Bao's avatar
Ke Bao committed
1709
        return self.model.forward(
1710
1711
1712
1713
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
Ke Bao's avatar
Ke Bao committed
1714
1715
        )

1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
    def forward_split_prefill(
        self,
        forward_batch: ForwardBatch,
        reinit_attn_backend: bool = False,
        forward_count: int = 1,
    ) -> LogitsProcessorOutput:
        if forward_batch.split_index == 0 or reinit_attn_backend:
            self.attn_backend.init_forward_metadata(forward_batch)
        next_split_index = min(
            forward_batch.split_index + forward_count,
            self.model_config.num_hidden_layers,
        )
        ret = self.model.forward_split_prefill(
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            (forward_batch.split_index, next_split_index),
        )
        forward_batch.split_index = next_split_index
        return ret

1737
    def forward(
1738
1739
1740
1741
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
1742
1743
        reinit_attn_backend: bool = False,
        split_forward_count: int = 1,
1744
1745
1746
1747
1748
1749
1750
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
        self.forward_pass_id += 1

        with get_global_expert_distribution_recorder().with_forward_pass(
            self.forward_pass_id,
            forward_batch,
        ):
1751
            output = self._forward_raw(
1752
1753
1754
1755
1756
                forward_batch,
                skip_attn_backend_init,
                pp_proxy_tensors,
                reinit_attn_backend,
                split_forward_count,
1757
1758
            )

1759
        if self.eplb_manager is not None:
1760
            self.eplb_manager.on_forward_pass_end()
1761
1762
1763

        return output

1764
1765
1766
1767
1768
    def _forward_raw(
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool,
        pp_proxy_tensors: Optional[PPProxyTensors],
1769
1770
        reinit_attn_backend: bool = False,
        split_forward_count: int = 1,
1771
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
1772
        can_run_cuda_graph = bool(
1773
            forward_batch.forward_mode.is_cuda_graph()
1774
1775
            and self.graph_runner
            and self.graph_runner.can_run(forward_batch)
1776
1777
        )
        if can_run_cuda_graph:
1778
            ret = self.graph_runner.replay(
1779
1780
1781
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1782
            )
Cheng Wan's avatar
Cheng Wan committed
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
            return ret, can_run_cuda_graph

        # For MLP sync
        if forward_batch.global_num_tokens_cpu is not None:
            forward_batch.prepare_mlp_sync_batch(self)

        if forward_batch.forward_mode.is_decode():
            ret = self.forward_decode(
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
            )
1795
        elif forward_batch.forward_mode.is_extend():
1796
            ret = self.forward_extend(
1797
1798
1799
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1800
            )
1801
1802
1803
1804
1805
1806
        elif forward_batch.forward_mode.is_split_prefill():
            ret = self.forward_split_prefill(
                forward_batch,
                reinit_attn_backend=reinit_attn_backend,
                forward_count=split_forward_count,
            )
Ke Bao's avatar
Ke Bao committed
1807
        elif forward_batch.forward_mode.is_idle():
1808
            ret = self.forward_idle(forward_batch, pp_proxy_tensors=pp_proxy_tensors)
Lianmin Zheng's avatar
Lianmin Zheng committed
1809
        else:
1810
            raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode}")
1811

Cheng Wan's avatar
Cheng Wan committed
1812
1813
1814
        if forward_batch.global_num_tokens_cpu is not None:
            forward_batch.post_forward_mlp_sync_batch(ret)

1815
1816
        return ret, can_run_cuda_graph

1817
1818
1819
    def _preprocess_logits(
        self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
    ):
1820
        # Apply logit bias
1821
1822
1823
1824
1825
1826
1827
1828
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
1829
1830
        sampling_info.apply_logits_bias(logits_output.next_token_logits)

1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
    def sample(
        self,
        logits_output: LogitsProcessorOutput,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        """Sample and compute logprobs and update logits_output.

        Args:
            logits_output: The logits output from the model forward
            forward_batch: The forward batch that generates logits_output

        Returns:
            A list of next_token_ids
        """
        # For duplex models with multiple output streams.
        if isinstance(logits_output, tuple):
            return torch.stack(
                [self.sample(values, forward_batch) for values in logits_output],
                axis=-1,
            )
1851

1852
1853
        self._preprocess_logits(logits_output, forward_batch.sampling_info)

1854
1855
1856
        # Sample the next tokens
        next_token_ids = self.sampler(
            logits_output,
1857
            forward_batch.sampling_info,
1858
1859
            forward_batch.return_logprob,
            forward_batch.top_logprobs_nums,
1860
            forward_batch.token_ids_logprobs,
1861
        )
1862
1863
        return next_token_ids

Yineng Zhang's avatar
Yineng Zhang committed
1864
1865
1866
1867
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
1868
        rope_scaling = getattr(self.model_config.hf_text_config, "rope_scaling", {})
Yineng Zhang's avatar
Yineng Zhang committed
1869
1870
        if rope_scaling is None:
            return False
1871
1872
        is_mrope_enabled = "mrope_section" in rope_scaling
        return is_mrope_enabled
1873

1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
    def save_remote_model(self, url: str):
        from sglang.srt.model_loader.loader import RemoteModelLoader

        logger.info(f"Saving model to {url}")
        RemoteModelLoader.save_model(self.model, self.model_config.model_path, url)

    def save_sharded_model(
        self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None
    ):
        from sglang.srt.model_loader.loader import ShardedStateLoader

        logger.info(
            f"Save sharded model to {path} with pattern {pattern} and max_size {max_size}"
        )
        ShardedStateLoader.save_model(self.model, path, pattern, max_size)

1890
1891
1892
1893
1894
1895
1896

def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tensor]]):
    params_dict = dict(model.named_parameters())
    for name, tensor in named_tensors:
        default_weight_loader(params_dict[name], tensor)


1897
def _unwrap_tensor(tensor, tp_rank, device):
1898
    if isinstance(tensor, LocalSerializedTensor):
1899
        tensor = tensor.get(tp_rank)
1900
    return tensor.to(device)
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911


@dataclass
class LocalSerializedTensor:
    """torch.Tensor that gets serialized by MultiprocessingSerializer (which only serializes a pointer and not the data).
    The i-th element in the list corresponds to i-th rank's GPU."""

    values: List[bytes]

    def get(self, rank: int):
        return MultiprocessingSerializer.deserialize(self.values[rank])