model_runner.py 52.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import datetime
17
import gc
18
import inspect
Shuo Yang's avatar
Shuo Yang committed
19
import json
20
import logging
21
import os
22
import time
23
24
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26

import torch
27
import torch.distributed as dist
28

29
from sglang.srt import debug_utils
30
31
32
33
from sglang.srt.configs.device_config import DeviceConfig
from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
from sglang.srt.distributed import (
zhyncs's avatar
zhyncs committed
34
    get_tp_group,
35
    get_world_group,
zhyncs's avatar
zhyncs committed
36
37
    init_distributed_environment,
    initialize_model_parallel,
38
    set_custom_all_reduce,
39
    set_mscclpp_all_reduce,
zhyncs's avatar
zhyncs committed
40
)
41
from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
42
from sglang.srt.layers.attention.tbo_backend import TboAttnBackend
43
44
from sglang.srt.layers.dp_attention import (
    get_attention_tp_group,
45
    get_attention_tp_size,
46
47
    initialize_dp_attention,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
48
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
49
50
51
from sglang.srt.layers.quantization import (
    deep_gemm_wrapper,
    monkey_patch_isinstance_for_vllm_base_layer,
52
)
53
from sglang.srt.layers.sampler import Sampler
54
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
55
from sglang.srt.layers.utils import is_sm100_supported
56
from sglang.srt.lora.lora_manager import LoRAManager
57
from sglang.srt.managers.eplb_manager import EPLBManager
58
59
60
61
62
63
from sglang.srt.managers.expert_distribution import (
    ExpertDistributionRecorder,
    get_global_expert_distribution_recorder,
    set_global_expert_distribution_recorder,
)
from sglang.srt.managers.expert_location import (
64
    ExpertLocationMetadata,
65
66
67
68
    compute_initial_expert_location_metadata,
    get_global_expert_location_metadata,
    set_global_expert_location_metadata,
)
69
70
71
72
from sglang.srt.managers.schedule_batch import (
    GLOBAL_SERVER_ARGS_KEYS,
    global_server_args_dict,
)
73
from sglang.srt.mem_cache.memory_pool import (
Shuo Yang's avatar
Shuo Yang committed
74
    DoubleSparseTokenToKVPool,
75
76
77
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
78
    TokenToKVPoolAllocator,
79
)
Lianmin Zheng's avatar
Lianmin Zheng committed
80
from sglang.srt.mem_cache.paged_allocator import PagedTokenToKVPoolAllocator
Yineng Zhang's avatar
Yineng Zhang committed
81
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
82
from sglang.srt.model_executor.expert_location_updater import ExpertLocationUpdater
83
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
84
from sglang.srt.model_loader import get_model
85
from sglang.srt.model_loader.loader import DefaultModelLoader, get_model_loader
Lianmin Zheng's avatar
Lianmin Zheng committed
86
from sglang.srt.model_loader.utils import set_default_torch_dtype
87
from sglang.srt.model_loader.weight_utils import default_weight_loader
88
from sglang.srt.patch_torch import monkey_patch_torch_reductions
89
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
90
from sglang.srt.server_args import ServerArgs
91
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
92
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
93
from sglang.srt.utils import (
94
    MultiprocessingSerializer,
95
    cpu_has_amx_support,
96
    dynamic_import,
97
    enable_show_time_cost,
98
    get_available_gpu_memory,
99
    get_bool_env_var,
100
    init_custom_process_group,
bjmsong's avatar
bjmsong committed
101
    is_cuda,
102
    is_fa3_default_architecture,
103
    is_flashinfer_available,
HAI's avatar
HAI committed
104
    is_hip,
105
    is_hopper_with_cuda_12_3,
106
    is_no_spec_infer_or_topk_one,
107
    monkey_patch_p2p_access_check,
108
    monkey_patch_vllm_gguf_config,
109
    set_cpu_offload_max_bytes,
110
    set_cuda_arch,
111
)
112

113
114
_is_hip = is_hip()

Lianmin Zheng's avatar
Lianmin Zheng committed
115
# Use a small KV cache pool size for tests in CI
116
SGLANG_CI_SMALL_KV_SIZE = os.getenv("SGLANG_CI_SMALL_KV_SIZE", None)
Lianmin Zheng's avatar
Lianmin Zheng committed
117
118

# Detect stragger ranks in model loading
119
120
UNBALANCED_MODEL_LOADING_TIMEOUT_S = 300

Lianmin Zheng's avatar
Lianmin Zheng committed
121
122
logger = logging.getLogger(__name__)

123

124
125
126
127
128
129
130
131
132
133
134
135
136
class RankZeroFilter(logging.Filter):
    """Filter that only allows INFO level logs from rank 0, but allows all other levels from any rank."""

    def __init__(self, is_rank_zero):
        super().__init__()
        self.is_rank_zero = is_rank_zero

    def filter(self, record):
        if record.levelno == logging.INFO:
            return self.is_rank_zero
        return True


Lianmin Zheng's avatar
Lianmin Zheng committed
137
class ModelRunner:
138
139
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
140
141
    def __init__(
        self,
142
        model_config: ModelConfig,
143
144
145
146
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
147
148
        pp_rank: int,
        pp_size: int,
149
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
150
        server_args: ServerArgs,
151
        is_draft_worker: bool = False,
152
153
        req_to_token_pool: Optional[ReqToTokenPool] = None,
        token_to_kv_pool_allocator: Optional[TokenToKVPoolAllocator] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
154
    ):
155
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
156
157
        self.model_config = model_config
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
158
        self.device = server_args.device
159
        self.gpu_id = gpu_id
160
161
162
163

        # Apply the rank zero filter to logger
        if not any(isinstance(f, RankZeroFilter) for f in logger.filters):
            logger.addFilter(RankZeroFilter(tp_rank == 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
164
165
        self.tp_rank = tp_rank
        self.tp_size = tp_size
166
        self.dp_size = server_args.dp_size
167
168
        self.pp_rank = pp_rank
        self.pp_size = pp_size
Zhang, Liangang's avatar
Zhang, Liangang committed
169
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
170
        self.server_args = server_args
171
        self.is_draft_worker = is_draft_worker
172
173
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
174
175
176
        self.is_multimodal_chunked_prefill_supported = (
            model_config.is_multimodal_chunked_prefill_supported
        )
177
178
179
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
180
        self.page_size = server_args.page_size
181
182
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
Baizhou Zhang's avatar
Baizhou Zhang committed
183
        self.use_mla_backend = self.model_config.attention_arch == AttentionArch.MLA
Chang Su's avatar
Chang Su committed
184
        self.attention_chunk_size = model_config.attention_chunk_size
Ke Bao's avatar
Ke Bao committed
185

186
187
        self.forward_pass_id = 0

188
        # Model-specific adjustment
189
        self.model_specific_adjustment()
Shuo Yang's avatar
Shuo Yang committed
190

191
192
        if server_args.show_time_cost:
            enable_show_time_cost()
193
194

        # Global vars
195
        global_server_args_dict.update(
196
197
198
            {k: getattr(server_args, k) for k in GLOBAL_SERVER_ARGS_KEYS}
            | {
                # TODO it is indeed not a "server args"
199
                "use_mla_backend": self.use_mla_backend,
200
                "speculative_algorithm": self.spec_algorithm,
201
202
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
203

204
        # CPU offload
205
206
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

207
        # Get memory before model loading
208
        min_per_gpu_memory = self.init_torch_distributed()
209

210
        # Update deep gemm configure
211
212
        if deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
            deep_gemm_wrapper.update_deep_gemm_config(gpu_id, server_args)
213

Lianmin Zheng's avatar
Lianmin Zheng committed
214
        # If it is a draft model, tp_group can be different
215
216
        self.initialize(min_per_gpu_memory)

217
218
219
220
221
        # temporary cached values
        self.support_pp = (
            "pp_proxy_tensors" in inspect.signature(self.model.forward).parameters
        )

222
223
    def initialize(self, min_per_gpu_memory: float):
        server_args = self.server_args
224
225
226
227
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=self.server_args.enable_memory_saver
        )

228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        if not self.is_draft_worker:
            set_global_expert_location_metadata(
                compute_initial_expert_location_metadata(server_args, self.model_config)
            )
            if self.tp_rank == 0 and get_bool_env_var(
                "SGLANG_LOG_EXPERT_LOCATION_METADATA"
            ):
                logger.info(
                    f"Initial expert_location_metadata: {get_global_expert_location_metadata().debug_str()}"
                )

            set_global_expert_distribution_recorder(
                ExpertDistributionRecorder.init_new(
                    server_args,
                    get_global_expert_location_metadata(),
                    rank=self.tp_rank,
                )
            )

247
248
249
250
251
        self.eplb_manager = (
            EPLBManager(self)
            if self.server_args.enable_eplb and (not self.is_draft_worker)
            else None
        )
252
        self.expert_location_updater = ExpertLocationUpdater()
253

254
        # Load the model
255
        self.sampler = Sampler()
256
        self.load_model()
257

258
259
260
261
262
263
        self.start_layer = getattr(self.model, "start_layer", 0)
        self.end_layer = getattr(
            self.model, "end_layer", self.model_config.num_hidden_layers
        )
        self.num_effective_layers = self.end_layer - self.start_layer

264
        # Apply torchao quantization
265
266
267
268
269
270
        torchao_applied = getattr(self.model, "torchao_applied", False)
        # In layered loading, torchao may have been applied
        if not torchao_applied:
            apply_torchao_config_to_model(
                self.model, global_server_args_dict["torchao_config"]
            )
271

272
        # Apply torch TP if the model supports it
273
274
275
276
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()

277
        # Init lora
278
279
        if server_args.lora_paths is not None:
            self.init_lora_manager()
280
281

        # Init memory pool and attention backends
282
283
        self.init_memory_pool(
            min_per_gpu_memory,
284
            server_args.max_running_requests,
285
286
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
287
288
289
290
291
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
292
            self.cuda_graph_runner = None
Zhang, Liangang's avatar
Zhang, Liangang committed
293
            self.init_attention_backend()
294

James Liu's avatar
James Liu committed
295
296
297
298
        # auxiliary hidden capture mode. TODO: expose this to server args?
        if self.spec_algorithm.is_eagle3() and not self.is_draft_worker:
            self.model.set_eagle3_layers_to_capture()

299
300
301
    def model_specific_adjustment(self):
        server_args = self.server_args

302
303
304
305
306
307
308
309
310
311
        if (
            server_args.attention_backend == "intel_amx"
            and server_args.device == "cpu"
            and not cpu_has_amx_support()
        ):
            logger.info(
                "The current platform does not support Intel AMX, will fallback to torch_native backend."
            )
            server_args.attention_backend = "torch_native"

312
        if server_args.attention_backend is None:
313
            """
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
            Auto select the fastest attention backend.

316
317
318
319
320
            1. Models with MHA Architecture (e.g: Llama, QWen)
                1.1 We will turn on FA3 on hopper unless user use spec decode with topk > 1 or page_size > 1.
                1.2 In other cases, we will use flashinfer if available, otherwise use triton.
            2. Models with MLA Architecture and using FA3
                2.1 We will use FA3 backend on hopper.
321
322
                2.2 We will use Flashinfer backend on blackwell.
                2.3 Otherwise, we will use triton backend.
323
324
            """

325
            if not self.use_mla_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
326
                # MHA architecture
327
                if (
328
                    is_hopper_with_cuda_12_3()
329
330
331
332
                    and is_no_spec_infer_or_topk_one(server_args)
                    and is_fa3_default_architecture(self.model_config.hf_config)
                ):
                    server_args.attention_backend = "fa3"
333
334
                elif _is_hip:
                    server_args.attention_backend = "aiter"
335
336
337
338
                else:
                    server_args.attention_backend = (
                        "flashinfer" if is_flashinfer_available() else "triton"
                    )
339
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
340
                # MLA architecture
341
                if is_hopper_with_cuda_12_3():
342
                    server_args.attention_backend = "fa3"
343
344
                elif is_sm100_supported():
                    server_args.attention_backend = "flashinfer"
345
346
347
348
349
350
351
352
353
                elif _is_hip:
                    head_num = self.model_config.get_num_kv_heads(self.tp_size)
                    # TODO current aiter only support head number 16 or 128 head number
                    if (
                        head_num == 128 or head_num == 16
                    ) and self.spec_algorithm.is_none():
                        server_args.attention_backend = "aiter"
                    else:
                        server_args.attention_backend = "triton"
354
355
                else:
                    server_args.attention_backend = "triton"
356
357
358
            logger.info(
                f"Attention backend not set. Use {server_args.attention_backend} backend by default."
            )
359
        elif self.use_mla_backend:
360
            if server_args.device != "cpu":
361
                if server_args.attention_backend in [
362
                    "aiter",
363
364
365
366
                    "flashinfer",
                    "fa3",
                    "triton",
                    "flashmla",
367
                    "cutlass_mla",
368
                ]:
369
370
371
                    logger.info(
                        f"MLA optimization is turned on. Use {server_args.attention_backend} backend."
                    )
372
                else:
373
374
375
376
                    raise ValueError(
                        f"Invalid attention backend for MLA: {server_args.attention_backend}"
                    )
            else:
377
378
379
380
                if server_args.attention_backend != "intel_amx":
                    raise ValueError(
                        "MLA optimization not supported on CPU except for intel_amx backend."
                    )
381

382
383
384
385
386
387
388
389
390
391
        if (
            server_args.attention_backend == "fa3"
            and server_args.kv_cache_dtype == "fp8_e5m2"
        ):
            logger.warning(
                "FlashAttention3 only supports fp8_e4m3 if using FP8; "
                "Setting attention backend to triton."
            )
            server_args.attention_backend = "triton"

392
        if server_args.enable_double_sparsity:
393
394
395
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
396
397
398
399
400
401
402
403
404
            server_args.attention_backend = "triton"
            server_args.disable_cuda_graph = True
            if server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)

        if self.is_multimodal:
Mick's avatar
Mick committed
405
            self.mem_fraction_static *= 0.90
406
            logger.info(
407
408
                f"Automatically reduce --mem-fraction-static to {self.mem_fraction_static:.3f} "
                f"because this is a multimodal model."
409
            )
410
411
412
413
414
415
            if not self.is_multimodal_chunked_prefill_supported:
                server_args.chunked_prefill_size = -1
                logger.info(
                    f"Automatically turn of --chunked-prefill-size as it is not supported for "
                    f"{self.model_config.hf_config.model_type}"
                )
416

417
418
419
        if not self.use_mla_backend:
            server_args.disable_chunked_prefix_cache = True
        elif self.page_size > 1:
420
            logger.info("Disable chunked prefix cache when page size > 1.")
421
422
423
            server_args.disable_chunked_prefix_cache = True

        if not server_args.disable_chunked_prefix_cache:
424
            logger.info("Chunked prefix cache is turned on.")
425

kk's avatar
kk committed
426
427
428
429
        if server_args.attention_backend == "aiter":
            if self.model_config.context_len > 8192:
                self.mem_fraction_static *= 0.85

430
    def init_torch_distributed(self):
431
        logger.info("Init torch distributed begin.")
432

433
434
435
436
437
438
439
440
        try:
            torch.get_device_module(self.device).set_device(self.gpu_id)
        except Exception:
            logger.warning(
                f"Context: {self.device=} {self.gpu_id=} {os.environ.get('CUDA_VISIBLE_DEVICES')=} {self.tp_rank=} {self.tp_size=}"
            )
            raise

Zhang, Liangang's avatar
Zhang, Liangang committed
441
442
        if self.device == "cuda":
            backend = "nccl"
443
        elif self.device == "xpu":
444
            backend = "xccl"
445
446
        elif self.device == "hpu":
            backend = "hccl"
447
448
        elif self.device == "cpu":
            backend = "gloo"
449
450
        elif self.device == "npu":
            backend = "hccl"
451

452
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
453
        if not self.server_args.enable_p2p_check:
454
455
            monkey_patch_p2p_access_check()

456
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
457
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
458
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
459
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
460
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
461
        set_mscclpp_all_reduce(self.server_args.enable_mscclpp)
462
463

        if not self.is_draft_worker:
Mick's avatar
Mick committed
464
            # Only initialize the distributed environment on the target model worker.
465
466
            init_distributed_environment(
                backend=backend,
467
468
                world_size=self.tp_size * self.pp_size,
                rank=self.tp_size * self.pp_rank + self.tp_rank,
469
470
                local_rank=self.gpu_id,
                distributed_init_method=dist_init_method,
471
                timeout=self.server_args.dist_timeout,
472
            )
473
474
475
476
            initialize_model_parallel(
                tensor_model_parallel_size=self.tp_size,
                pipeline_model_parallel_size=self.pp_size,
            )
477
478
479
480
481
            initialize_dp_attention(
                enable_dp_attention=self.server_args.enable_dp_attention,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                dp_size=self.server_args.dp_size,
482
                moe_dense_tp_size=self.server_args.moe_dense_tp_size,
483
                pp_size=self.server_args.pp_size,
484
            )
485

486
        min_per_gpu_memory = get_available_gpu_memory(
487
488
489
490
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
491
        )
492
        self.tp_group = get_tp_group()
493
        self.attention_tp_group = get_attention_tp_group()
494

495
        # Check memory for tensor parallelism
496
        local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
497
        if self.tp_size > 1:
498
            if min_per_gpu_memory < local_gpu_memory * 0.9:
499
500
501
502
503
504
505
506
507
508
                if get_bool_env_var("SGL_DISABLE_TP_MEMORY_INBALANCE_CHECK"):
                    logger.warning(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
                else:
                    raise ValueError(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
509

510
511
512
        logger.info(
            f"Init torch distributed ends. mem usage={(before_avail_memory - local_gpu_memory):.2f} GB"
        )
513
        return min_per_gpu_memory
514

Lianmin Zheng's avatar
Lianmin Zheng committed
515
    def load_model(self):
516
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
517
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
518
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
519
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
520
521

        # This can reduce thread conflicts and speed up weight loading.
522
523
        if self.device != "cpu":
            torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
524
525
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
526
527
528
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
Zhang, Liangang's avatar
Zhang, Liangang committed
529
                self.server_args.dtype = "float16"
530
                self.model_config.dtype = torch.float16
Zhang, Liangang's avatar
Zhang, Liangang committed
531
532
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
533

534
535
        set_cuda_arch()

536
        # Prepare the model config
537
538
539
540
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
        )
541
542
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
543
544

        # Load the model
545
546
        # Remove monkey_patch when linear.py quant remove dependencies with vllm
        monkey_patch_vllm_parallel_state()
547
548
        monkey_patch_isinstance_for_vllm_base_layer()

549
550
551
552
553
554
        with self.memory_saver_adapter.region():
            self.model = get_model(
                model_config=self.model_config,
                load_config=self.load_config,
                device_config=DeviceConfig(self.device),
            )
555
        monkey_patch_vllm_parallel_state(reverse=True)
556
        monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
557

bjmsong's avatar
bjmsong committed
558
559
560
561
562
563
        if self.server_args.kv_cache_dtype == "fp8_e4m3":
            if self.server_args.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.server_args.quantization_param_path
                    )
564
565
566
567
                    logger.info(
                        "Loaded KV cache scaling factors from %s",
                        self.server_args.quantization_param_path,
                    )
bjmsong's avatar
bjmsong committed
568
569
570
571
572
573
574
575
576
577
578
579
580
                else:
                    raise RuntimeError(
                        "Using FP8 KV cache and scaling factors provided but "
                        "model %s does not support loading scaling factors.",
                        self.model.__class__,
                    )
            else:
                logger.warning(
                    "Using FP8 KV cache but no scaling factors "
                    "provided. Defaulting to scaling factors of 1.0. "
                    "This may lead to less accurate results!"
                )

581
        # Parse other args
582
        self.sliding_window_size = (
583
584
            self.model.get_attention_sliding_window_size()
            if hasattr(self.model, "get_attention_sliding_window_size")
585
586
            else None
        )
587
        self.dtype = self.model_config.dtype
588

589
        after_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
590
        logger.info(
591
            f"Load weight end. "
592
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
593
            f"dtype={self.dtype}, "
594
595
            f"avail mem={after_avail_memory:.2f} GB, "
            f"mem usage={(before_avail_memory - after_avail_memory):.2f} GB."
596
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
597

598
599
600
601
602
603
604
605
606
607
608
609
        # Handle the case where some ranks do not finish loading.
        try:
            dist.monitored_barrier(
                group=get_tp_group().cpu_group,
                timeout=datetime.timedelta(seconds=UNBALANCED_MODEL_LOADING_TIMEOUT_S),
                wait_all_ranks=True,
            )
        except RuntimeError:
            raise ValueError(
                f"TP rank {self.tp_rank} could finish the model loading, but there are other ranks that didn't finish loading. It is likely due to unexpected failures (e.g., OOM) or a slow node."
            ) from None

610
    def update_expert_location(
611
612
613
        self,
        new_expert_location_metadata: ExpertLocationMetadata,
        update_layer_ids: List[int],
614
    ):
615
        self.expert_location_updater.update(
616
617
            self.model.routed_experts_weights_of_layer,
            new_expert_location_metadata,
618
            update_layer_ids=update_layer_ids,
619
620
621
622
            nnodes=self.server_args.nnodes,
            rank=self.tp_rank,
        )

623
624
625
626
    def update_weights_from_disk(
        self, model_path: str, load_format: str
    ) -> tuple[bool, str]:
        """Update engine weights in-place from the disk."""
627
        logger.info(
Chayenne's avatar
Chayenne committed
628
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
629
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
630
631
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
632
        target_device = torch.device(self.device)
633
        self.model_config.model_path = model_path
634
635
        load_config = LoadConfig(load_format=load_format)

Lianmin Zheng's avatar
Lianmin Zheng committed
636
        # Only support DefaultModelLoader for now
637
638
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
639
640
            message = f"Failed to get model loader: {loader}."
            return False, message
641
642
643

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
644
                DefaultModelLoader.Source.init_new(config, self.model)
645
646
647
648
            )
            return iter

        def model_load_weights(model, iter):
649
            DefaultModelLoader.load_weights_and_postprocess(model, iter, target_device)
650
651
            return model

652
        with set_default_torch_dtype(self.model_config.dtype):
653
            try:
654
                iter = get_weight_iter(self.model_config)
655
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
656
                message = f"Failed to get weights iterator: {e}."
657
658
659
660
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
663
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
664
665
                del iter
                gc.collect()
666
                iter = get_weight_iter(self.model_config)
667
668
669
670
671
672
673
674
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.load_config = load_config

675
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
676
        return True, "Succeeded to update model weights."
677

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
    def init_weights_update_group(
        self,
        master_address,
        master_port,
        rank_offset,
        world_size,
        group_name,
        backend="nccl",
    ):
        """Initialize the Torch process group for model parameter updates.

        `_model_update_group` is used in the RLHF workflow, where rank
        0 is the actor model in the training engine, and the other ranks are
        the inference engine, which is used for rollout.

        In the RLHF workflow, the training engine updates the model
        weights/parameters online, and broadcasts them to the inference
        engine through the `_model_update_group` process group.
        """
        assert (
            torch.distributed.is_initialized()
        ), "Default torch process group must be initialized"
        assert group_name != "", "Group name cannot be empty"

        rank = rank_offset + self.tp_rank

        logger.info(
            f"init custom process group: master_address={master_address}, master_port={master_port}, "
706
            f"rank_offset={rank_offset}, rank={rank}, world_size={world_size}, group_name={group_name}, backend={backend}"
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
        )

        try:
            self._model_update_group = init_custom_process_group(
                backend=backend,
                init_method=f"tcp://{master_address}:{master_port}",
                world_size=world_size,
                rank=rank,
                group_name=group_name,
            )
            return True, "Succeeded to initialize custom process group."
        except Exception as e:
            message = f"Failed to initialize custom process group: {e}."
            logger.error(message)
            return False, message

    def update_weights_from_distributed(self, name, dtype, shape):
        """
        Update specific parameter in the model weights online
        through `_model_update_group` process group.

        Args:
            name: the name of the parameter to be updated.
            dtype: the data type of the parameter to be updated.
            shape: the shape of the parameter to be updated.
        """
        target_dtype = (
            dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
        )

        assert (
            self._model_update_group is not None
        ), "model update group must be initialized"

        try:
            weights = torch.empty(shape, dtype=target_dtype, device=self.device)
            torch.distributed.broadcast(weights, src=0, group=self._model_update_group)
            self.model.load_weights([(name, weights)])
            return True, f"Succeeded to update parameter {name} online."

        except Exception as e:
            error_msg = (
                f"Failed to update parameter online: {e}. "
                f"The full weights of the ModelRunner are partially updated. "
                f"Please discard the whole weights."
            )
            logger.error(error_msg)
            return False, error_msg

756
757
758
759
760
761
762
763
764
765
766
    def update_weights_from_tensor(
        self,
        named_tensors: List[Tuple[str, Union[torch.Tensor, "LocalSerializedTensor"]]],
        load_format: Optional[str] = None,
    ):
        named_tensors = [
            (name, _unwrap_tensor(tensor, tp_rank=self.tp_rank))
            for name, tensor in named_tensors
        ]
        if load_format == "direct":
            _model_load_weights_direct(self.model, named_tensors)
767
768
769
        elif load_format in self.server_args.custom_weight_loader:
            custom_loader = dynamic_import(load_format)
            custom_loader(self.model, named_tensors)
770
771
772
773
        elif load_format is None:
            self.model.load_weights(named_tensors)
        else:
            raise NotImplementedError(f"Unknown load_format={load_format}")
774
        return True, "Success"
775

776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

793
794
795
796
797
798
799
800
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            lora_paths=self.server_args.lora_paths,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
801
            lora_backend=self.server_args.lora_backend,
802
803
            tp_size=self.tp_size,
            tp_rank=self.tp_rank,
804
805
806
        )
        logger.info("LoRA manager ready.")

807
    def profile_max_num_token(self, total_gpu_memory: int):
808
        available_gpu_memory = get_available_gpu_memory(
809
810
811
812
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
813
        )
814
815
816
817
818
        if self.is_draft_worker:
            num_layers = getattr(
                self.model_config.hf_config,
                "num_nextn_predict_layers",
                self.num_effective_layers,
819
            )
820
821
822
        else:
            num_layers = self.num_effective_layers
        if self.use_mla_backend:
823
824
            # FIXME: pipeline parallelism is not compatible with mla backend
            assert self.pp_size == 1
825
826
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
827
                * num_layers
828
                * torch._utils._element_size(self.kv_cache_dtype)
829
830
831
            )
        else:
            cell_size = (
832
                self.model_config.get_num_kv_heads(get_attention_tp_size())
833
                * self.model_config.head_dim
834
                * num_layers
835
                * 2
836
                * torch._utils._element_size(self.kv_cache_dtype)
837
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
838
839
840
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
841
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
842
843
        return max_num_token

844
    def init_memory_pool(
845
846
        self,
        total_gpu_memory: int,
847
848
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
849
    ):
850
851
852
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
853
            if _is_hip:  # Using natively supported format
HAI's avatar
HAI committed
854
855
856
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
bjmsong's avatar
bjmsong committed
857
858
859
        elif self.server_args.kv_cache_dtype == "fp8_e4m3":
            if is_cuda():
                self.kv_cache_dtype = torch.float8_e4m3fn
860
861
862
863
864
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

865
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
866
867
868
869
870
871
872
873
874
875
876
877

        if max_num_reqs is None:
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
                4096,
            )

878
879
880
        if SGLANG_CI_SMALL_KV_SIZE:
            self.max_total_num_tokens = int(SGLANG_CI_SMALL_KV_SIZE)

881
882
883
        if not self.spec_algorithm.is_none():
            if self.is_draft_worker:
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
884
                max_num_reqs = self.server_args.max_num_reqs
885
            else:
886
887
                # We are sharing the `token_to_kv_pool`, and both verify and draft tokens
                # can be concurrently allocated, so we should give a headroom for it.
888
889
                self.server_args.draft_runner_cache_size = (
                    self.max_total_num_tokens
890
891
892
893
894
895
896
                    # draft
                    + max_num_reqs
                    * self.server_args.speculative_num_steps
                    * self.server_args.speculative_eagle_topk
                    # verify
                    + max_num_reqs * self.server_args.speculative_num_draft_tokens
                    # buffer
897
898
                    + 100
                )
899
900
901
902
                # Target worker and draft worker shares the same indices for the
                # token_to_kv_pool, so we should make sure to match max_total_num_tokens.
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
                self.server_args.max_num_reqs = max_num_reqs
903

904
905
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
906
                logging.warning(
907
908
909
910
911
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
912

913
914
915
916
917
918
        self.max_total_num_tokens = (
            self.max_total_num_tokens
            // self.server_args.page_size
            * self.server_args.page_size
        )

919
        if self.max_total_num_tokens <= 0:
920
            raise RuntimeError(
921
                "Not enough memory. Please try to increase --mem-fraction-static."
922
            )
923

924
        if self.req_to_token_pool is None:
Byron Hsu's avatar
Byron Hsu committed
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
            if self.server_args.disaggregation_mode == "decode":
                from sglang.srt.disaggregation.decode import DecodeReqToTokenPool

                # subscribe memory for pre-allocated requests
                # if max_num_reqs <= 32, we pre-allocate 2x requests
                pre_alloc_size = max_num_reqs * 2 if max_num_reqs <= 32 else 0
                self.req_to_token_pool = DecodeReqToTokenPool(
                    size=max_num_reqs,
                    max_context_len=self.model_config.context_len + 4,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    pre_alloc_size=pre_alloc_size,
                )
            else:
                self.req_to_token_pool = ReqToTokenPool(
                    size=max_num_reqs,
                    max_context_len=self.model_config.context_len + 4,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                )
945
946
947
948
        else:
            # Draft worker shares req_to_token_pool with the target worker.
            assert self.is_draft_worker

949
        if self.use_mla_backend:
950
951
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
952
                page_size=self.page_size,
953
                dtype=self.kv_cache_dtype,
954
955
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
956
957
958
959
                layer_num=(
                    self.model_config.num_hidden_layers
                    if not self.is_draft_worker
                    else self.model_config.hf_config.num_nextn_predict_layers
960
                ),  # PP is not compatible with mla backend
Zhang, Liangang's avatar
Zhang, Liangang committed
961
                device=self.device,
962
                enable_memory_saver=self.server_args.enable_memory_saver,
963
964
                start_layer=self.start_layer,
                end_layer=self.end_layer,
965
            )
Shuo Yang's avatar
Shuo Yang committed
966
967
968
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
969
                page_size=self.page_size,
Shuo Yang's avatar
Shuo Yang committed
970
                dtype=self.kv_cache_dtype,
971
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
Shuo Yang's avatar
Shuo Yang committed
972
                head_dim=self.model_config.head_dim,
973
                layer_num=self.num_effective_layers,
Shuo Yang's avatar
Shuo Yang committed
974
975
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
976
                enable_memory_saver=self.server_args.enable_memory_saver,
977
978
                start_layer=self.start_layer,
                end_layer=self.end_layer,
Shuo Yang's avatar
Shuo Yang committed
979
            )
980
981
982
        else:
            self.token_to_kv_pool = MHATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
983
                page_size=self.page_size,
984
                dtype=self.kv_cache_dtype,
985
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
986
                head_dim=self.model_config.head_dim,
987
                layer_num=self.num_effective_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
988
                device=self.device,
989
                enable_memory_saver=self.server_args.enable_memory_saver,
990
991
                start_layer=self.start_layer,
                end_layer=self.end_layer,
992
            )
993
994

        if self.token_to_kv_pool_allocator is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
            if self.page_size == 1:
                self.token_to_kv_pool_allocator = TokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
            else:
                self.token_to_kv_pool_allocator = PagedTokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
1010
1011
1012
        else:
            assert self.is_draft_worker

1013
        logger.info(
1014
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
1015
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
1016
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1017

Lianmin Zheng's avatar
Lianmin Zheng committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

1027
1028
    def init_attention_backend(self):
        """Init attention kernel backend."""
1029
1030
1031
1032
1033
1034
1035
        if self.server_args.enable_two_batch_overlap:
            self.attn_backend = TboAttnBackend.init_new(self._get_attention_backend)
        else:
            self.attn_backend = self._get_attention_backend()

    # TODO unify with 6338
    def _get_attention_backend(self):
1036
        if self.server_args.attention_backend == "flashinfer":
1037
1038
1039
1040
            if not self.use_mla_backend:
                from sglang.srt.layers.attention.flashinfer_backend import (
                    FlashInferAttnBackend,
                )
1041

1042
1043
1044
                # Init streams
                if self.server_args.speculative_algorithm == "EAGLE":
                    self.plan_stream_for_flashinfer = torch.cuda.Stream()
1045
                return FlashInferAttnBackend(self)
1046
1047
1048
1049
1050
            else:
                from sglang.srt.layers.attention.flashinfer_mla_backend import (
                    FlashInferMLAAttnBackend,
                )

1051
                return FlashInferMLAAttnBackend(self)
1052
1053
1054
        elif self.server_args.attention_backend == "aiter":
            from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend

1055
            return AiterAttnBackend(self)
1056
1057
1058
1059
1060
1061
        elif self.server_args.attention_backend == "triton":
            assert not self.model_config.is_encoder_decoder, (
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            if self.server_args.enable_double_sparsity:
1062
1063
1064
1065
                from sglang.srt.layers.attention.double_sparsity_backend import (
                    DoubleSparseAttnBackend,
                )

1066
                return DoubleSparseAttnBackend(self)
1067
            else:
1068
1069
                from sglang.srt.layers.attention.triton_backend import TritonAttnBackend

1070
                return TritonAttnBackend(self)
1071
        elif self.server_args.attention_backend == "torch_native":
1072
1073
1074
1075
            from sglang.srt.layers.attention.torch_native_backend import (
                TorchNativeAttnBackend,
            )

1076
            return TorchNativeAttnBackend(self)
lukec's avatar
lukec committed
1077
1078
1079
        elif self.server_args.attention_backend == "flashmla":
            from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend

1080
            return FlashMLABackend(self)
1081
        elif self.server_args.attention_backend == "fa3":
1082
1083
1084
1085
            assert (
                torch.cuda.get_device_capability()[0] == 8 and not self.use_mla_backend
            ) or torch.cuda.get_device_capability()[0] == 9, (
                "FlashAttention v3 Backend requires SM>=80 and SM<=90. "
1086
1087
1088
1089
1090
1091
                "Please use `--attention-backend flashinfer`."
            )
            from sglang.srt.layers.attention.flashattention_backend import (
                FlashAttentionBackend,
            )

1092
            return FlashAttentionBackend(self)
1093
1094
1095
1096
1097
        elif self.server_args.attention_backend == "cutlass_mla":
            from sglang.srt.layers.attention.cutlass_mla_backend import (
                CutlassMLABackend,
            )

1098
            return CutlassMLABackend(self)
1099
1100
1101
1102
1103
1104
1105
        elif self.server_args.attention_backend == "intel_amx":
            from sglang.srt.layers.attention.intel_amx_backend import (
                IntelAMXAttnBackend,
            )

            logger.info(f"Intel AMX attention backend is enabled.")
            return IntelAMXAttnBackend(self)
1106
1107
1108
1109
        else:
            raise ValueError(
                f"Invalid attention backend: {self.server_args.attention_backend}"
            )
1110

Shuo Yang's avatar
Shuo Yang committed
1111
1112
1113
1114
1115
1116
1117
    def init_double_sparsity_channel_config(self, selected_channel):
        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

1118
        for i in range(self.start_layer, self.end_layer):
Shuo Yang's avatar
Shuo Yang committed
1119
1120
1121
1122
1123
1124
1125
1126
1127
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

1128
    def init_cuda_graphs(self):
1129
        """Capture cuda graphs."""
1130
1131
        self.cuda_graph_runner = None

1132
        if not self.is_generation:
1133
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
1134
1135
            return

1136
1137
        if self.server_args.disable_cuda_graph:
            return
1138

1139
        tic = time.perf_counter()
1140
        before_mem = get_available_gpu_memory(self.device, self.gpu_id)
1141
        logger.info(
1142
            f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
1143
        )
1144
        self.cuda_graph_runner = CudaGraphRunner(self)
1145
        after_mem = get_available_gpu_memory(self.device, self.gpu_id)
1146
        logger.info(
1147
            f"Capture cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. "
1148
            f"mem usage={(before_mem - after_mem):.2f} GB. avail mem={after_mem:.2f} GB."
1149
        )
1150

1151
    def apply_torch_tp(self):
1152
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
1153
1154
1155
1156
1157
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

1158
1159
1160
    def forward_decode(
        self, forward_batch: ForwardBatch, pp_proxy_tensors=None
    ) -> LogitsProcessorOutput:
1161
        self.attn_backend.init_forward_metadata(forward_batch)
1162
1163
1164
1165
        # FIXME: add pp_proxy_tensors arg to all models
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
1166
        return self.model.forward(
1167
            forward_batch.input_ids, forward_batch.positions, forward_batch, **kwargs
Lianmin Zheng's avatar
Lianmin Zheng committed
1168
1169
        )

1170
    def forward_extend(
1171
1172
1173
1174
1175
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors=None,
    ) -> LogitsProcessorOutput:
1176
1177
1178
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)

1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
        if forward_batch.input_embeds is not None:
            kwargs["input_embeds"] = forward_batch.input_embeds.bfloat16()
        if not self.is_generation:
            kwargs["get_embedding"] = True
        return self.model.forward(
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1192

1193
1194
1195
1196
1197
1198
    def forward_idle(
        self, forward_batch: ForwardBatch, pp_proxy_tensors=None
    ) -> LogitsProcessorOutput:
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
Ke Bao's avatar
Ke Bao committed
1199
        return self.model.forward(
1200
1201
1202
1203
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
Ke Bao's avatar
Ke Bao committed
1204
1205
        )

1206
    def forward(
1207
1208
1209
1210
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
1211
1212
1213
1214
1215
1216
1217
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
        self.forward_pass_id += 1

        with get_global_expert_distribution_recorder().with_forward_pass(
            self.forward_pass_id,
            forward_batch,
        ):
1218
            output = self._forward_raw(
1219
1220
1221
                forward_batch, skip_attn_backend_init, pp_proxy_tensors
            )

1222
        if self.eplb_manager is not None:
1223
            self.eplb_manager.on_forward_pass_end()
1224
1225
1226

        return output

1227
1228
1229
1230
1231
    def _forward_raw(
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool,
        pp_proxy_tensors: Optional[PPProxyTensors],
1232
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
1233
        can_run_cuda_graph = bool(
1234
1235
1236
            forward_batch.forward_mode.is_cuda_graph()
            and self.cuda_graph_runner
            and self.cuda_graph_runner.can_run(forward_batch)
1237
1238
        )
        if can_run_cuda_graph:
1239
            ret = self.cuda_graph_runner.replay(
1240
1241
1242
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1243
            )
1244
1245
        elif forward_batch.forward_mode.is_decode():
            ret = self.forward_decode(forward_batch, pp_proxy_tensors=pp_proxy_tensors)
1246
        elif forward_batch.forward_mode.is_extend():
1247
            ret = self.forward_extend(
1248
1249
1250
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1251
            )
Ke Bao's avatar
Ke Bao committed
1252
        elif forward_batch.forward_mode.is_idle():
1253
            ret = self.forward_idle(forward_batch, pp_proxy_tensors=pp_proxy_tensors)
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
        else:
1255
            raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode}")
1256

1257
1258
        return ret, can_run_cuda_graph

1259
1260
1261
    def _preprocess_logits(
        self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
    ):
1262
        # Apply logit bias
1263
1264
1265
1266
1267
1268
1269
1270
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
1271
1272
        sampling_info.apply_logits_bias(logits_output.next_token_logits)

1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
    def sample(
        self,
        logits_output: LogitsProcessorOutput,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        """Sample and compute logprobs and update logits_output.

        Args:
            logits_output: The logits output from the model forward
            forward_batch: The forward batch that generates logits_output

        Returns:
            A list of next_token_ids
        """
        # For duplex models with multiple output streams.
        if isinstance(logits_output, tuple):
            return torch.stack(
                [self.sample(values, forward_batch) for values in logits_output],
                axis=-1,
            )
1293

1294
1295
        self._preprocess_logits(logits_output, forward_batch.sampling_info)

1296
1297
1298
        # Sample the next tokens
        next_token_ids = self.sampler(
            logits_output,
1299
            forward_batch.sampling_info,
1300
1301
            forward_batch.return_logprob,
            forward_batch.top_logprobs_nums,
1302
            forward_batch.token_ids_logprobs,
1303
        )
1304
1305
        return next_token_ids

Yineng Zhang's avatar
Yineng Zhang committed
1306
1307
1308
1309
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
1310
        rope_scaling = getattr(self.model_config.hf_text_config, "rope_scaling", {})
Yineng Zhang's avatar
Yineng Zhang committed
1311
1312
        if rope_scaling is None:
            return False
1313
1314
        is_mrope_enabled = "mrope_section" in rope_scaling
        return is_mrope_enabled
1315

1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
    def save_remote_model(self, url: str):
        from sglang.srt.model_loader.loader import RemoteModelLoader

        logger.info(f"Saving model to {url}")
        RemoteModelLoader.save_model(self.model, self.model_config.model_path, url)

    def save_sharded_model(
        self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None
    ):
        from sglang.srt.model_loader.loader import ShardedStateLoader

        logger.info(
            f"Save sharded model to {path} with pattern {pattern} and max_size {max_size}"
        )
        ShardedStateLoader.save_model(self.model, path, pattern, max_size)

1332
1333
1334
1335
1336
1337
1338
1339
1340

def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tensor]]):
    params_dict = dict(model.named_parameters())
    for name, tensor in named_tensors:
        default_weight_loader(params_dict[name], tensor)


def _unwrap_tensor(tensor, tp_rank):
    if isinstance(tensor, LocalSerializedTensor):
1341
1342
1343
        monkey_patch_torch_reductions()
        tensor = tensor.get(tp_rank)
    return tensor.to(torch.cuda.current_device())
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354


@dataclass
class LocalSerializedTensor:
    """torch.Tensor that gets serialized by MultiprocessingSerializer (which only serializes a pointer and not the data).
    The i-th element in the list corresponds to i-th rank's GPU."""

    values: List[bytes]

    def get(self, rank: int):
        return MultiprocessingSerializer.deserialize(self.values[rank])