model_runner.py 43.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import datetime
17
import gc
Shuo Yang's avatar
Shuo Yang committed
18
import json
19
import logging
20
import os
21
import time
22
23
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24
25

import torch
26
import torch.distributed as dist
27
28
29
30
31

from sglang.srt.configs.device_config import DeviceConfig
from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
from sglang.srt.distributed import (
zhyncs's avatar
zhyncs committed
32
33
34
    get_tp_group,
    init_distributed_environment,
    initialize_model_parallel,
35
    set_custom_all_reduce,
zhyncs's avatar
zhyncs committed
36
)
37
from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
38
39
from sglang.srt.layers.dp_attention import (
    get_attention_tp_group,
40
    get_attention_tp_size,
41
42
    initialize_dp_attention,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
43
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
44
from sglang.srt.layers.quantization import monkey_patch_isinstance_for_vllm_base_layer
45
from sglang.srt.layers.sampler import Sampler
46
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
47
from sglang.srt.lora.lora_manager import LoRAManager
48
from sglang.srt.managers.schedule_batch import global_server_args_dict
49
from sglang.srt.mem_cache.memory_pool import (
Shuo Yang's avatar
Shuo Yang committed
50
    DoubleSparseTokenToKVPool,
51
52
53
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
54
    TokenToKVPoolAllocator,
55
)
Lianmin Zheng's avatar
Lianmin Zheng committed
56
from sglang.srt.mem_cache.paged_allocator import PagedTokenToKVPoolAllocator
Yineng Zhang's avatar
Yineng Zhang committed
57
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
58
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
59
from sglang.srt.model_loader import get_model
Lianmin Zheng's avatar
Lianmin Zheng committed
60
61
62
63
64
65
from sglang.srt.model_loader.loader import (
    DefaultModelLoader,
    device_loading_context,
    get_model_loader,
)
from sglang.srt.model_loader.utils import set_default_torch_dtype
66
from sglang.srt.model_loader.weight_utils import default_weight_loader
67
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
68
from sglang.srt.server_args import ServerArgs
69
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
70
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
71
from sglang.srt.utils import (
72
    MultiprocessingSerializer,
73
    enable_show_time_cost,
74
    get_available_gpu_memory,
75
    init_custom_process_group,
bjmsong's avatar
bjmsong committed
76
    is_cuda,
HAI's avatar
HAI committed
77
    is_hip,
78
    monkey_patch_p2p_access_check,
79
    monkey_patch_vllm_gguf_config,
80
    set_cpu_offload_max_bytes,
81
    set_cuda_arch,
82
)
83

Ying Sheng's avatar
Ying Sheng committed
84
logger = logging.getLogger(__name__)
Lianmin Zheng's avatar
Lianmin Zheng committed
85

86
87
88
89
SGLANG_CI_SMALL_KV_SIZE = os.getenv("SGLANG_CI_SMALL_KV_SIZE", None)
UNBALANCED_MODEL_LOADING_TIMEOUT_S = 300


Lianmin Zheng's avatar
Lianmin Zheng committed
90
class ModelRunner:
91
92
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
93
94
    def __init__(
        self,
95
        model_config: ModelConfig,
96
97
98
99
100
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
101
        server_args: ServerArgs,
102
        is_draft_worker: bool = False,
103
104
        req_to_token_pool: Optional[ReqToTokenPool] = None,
        token_to_kv_pool_allocator: Optional[TokenToKVPoolAllocator] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
105
    ):
106
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
107
108
        self.model_config = model_config
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
109
        self.device = server_args.device
110
        self.gpu_id = gpu_id
Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Zhang, Liangang's avatar
Zhang, Liangang committed
113
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
114
        self.server_args = server_args
115
        self.is_draft_worker = is_draft_worker
116
117
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
118
        self.should_log = tp_rank == 0
119
120
121
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
122
        self.page_size = server_args.page_size
123
124
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
Ke Bao's avatar
Ke Bao committed
125

126
        # Model-specific adjustment
127
        self.model_specific_adjustment()
Shuo Yang's avatar
Shuo Yang committed
128

129
130
        if server_args.show_time_cost:
            enable_show_time_cost()
131

132
        if server_args.disable_outlines_disk_cache:
133
134
            from outlines.caching import disable_cache

135
136
            disable_cache()

137
        # Global vars
138
139
        global_server_args_dict.update(
            {
140
141
                "attention_backend": server_args.attention_backend,
                "sampling_backend": server_args.sampling_backend,
142
                "triton_attention_reduce_in_fp32": server_args.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
143
                "disable_mla": server_args.disable_mla,
144
                "torchao_config": server_args.torchao_config,
145
                "enable_nan_detection": server_args.enable_nan_detection,
Ke Bao's avatar
Ke Bao committed
146
                "enable_dp_attention": server_args.enable_dp_attention,
xiaobochen's avatar
xiaobochen committed
147
                "enable_ep_moe": server_args.enable_ep_moe,
148
                "enable_deepep_moe": server_args.enable_deepep_moe,
149
                "device": server_args.device,
150
151
                "speculative_accept_threshold_single": server_args.speculative_accept_threshold_single,
                "speculative_accept_threshold_acc": server_args.speculative_accept_threshold_acc,
152
                "enable_flashinfer_mla": server_args.enable_flashinfer_mla,
lukec's avatar
lukec committed
153
                "enable_flashmla": server_args.enable_flashmla,
154
                "disable_radix_cache": server_args.disable_radix_cache,
155
                "flashinfer_mla_disable_ragged": server_args.flashinfer_mla_disable_ragged,
156
157
                "debug_tensor_dump_output_folder": server_args.debug_tensor_dump_output_folder,
                "debug_tensor_dump_inject": server_args.debug_tensor_dump_inject,
158
159
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
160

161
        # CPU offload
162
163
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

164
        # Get memory before model loading
165
        min_per_gpu_memory = self.init_torch_distributed()
166

167
168
169
170
171
        # If it is a draft model tp_group can be different.
        self.initialize(min_per_gpu_memory)

    def initialize(self, min_per_gpu_memory: float):
        server_args = self.server_args
172
173
174
175
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=self.server_args.enable_memory_saver
        )

176
        # Load the model
177
        self.sampler = Sampler()
178
        self.load_model()
179

180
        # Apply torchao quantization
181
182
183
184
185
186
        torchao_applied = getattr(self.model, "torchao_applied", False)
        # In layered loading, torchao may have been applied
        if not torchao_applied:
            apply_torchao_config_to_model(
                self.model, global_server_args_dict["torchao_config"]
            )
187

188
        # Apply torch TP if the model supports it
189
190
191
192
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()

193
        # Init lora
194
195
        if server_args.lora_paths is not None:
            self.init_lora_manager()
196
197

        # Init memory pool and attention backends
198
199
        self.init_memory_pool(
            min_per_gpu_memory,
200
            server_args.max_running_requests,
201
202
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
203
204
205
206
207
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
208
            self.cuda_graph_runner = None
Zhang, Liangang's avatar
Zhang, Liangang committed
209
            self.init_attention_backend()
210

James Liu's avatar
James Liu committed
211
212
213
214
        # auxiliary hidden capture mode. TODO: expose this to server args?
        if self.spec_algorithm.is_eagle3() and not self.is_draft_worker:
            self.model.set_eagle3_layers_to_capture()

215
216
217
218
219
220
221
222
223
224
225
226
227
228
    def model_specific_adjustment(self):
        server_args = self.server_args

        if (
            self.model_config.attention_arch == AttentionArch.MLA
            and not server_args.disable_mla
        ):
            # TODO: add MLA optimization on CPU
            if server_args.device != "cpu":
                if server_args.enable_flashinfer_mla:
                    logger.info(
                        "MLA optimization is turned on. Use flashinfer mla backend."
                    )
                    server_args.attention_backend = "flashinfer_mla"
lukec's avatar
lukec committed
229
230
231
                elif server_args.enable_flashmla:
                    logger.info("MLA optimization is turned on. Use flashmla decode.")
                    server_args.attention_backend = "flashmla"
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
                else:
                    logger.info("MLA optimization is turned on. Use triton backend.")
                    server_args.attention_backend = "triton"

        if server_args.enable_double_sparsity:
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
            server_args.attention_backend = "triton"
            server_args.disable_cuda_graph = True
            if server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)

        if self.is_multimodal:
            self.mem_fraction_static *= 0.95
            logger.info(
                f"Automatically reduce --mem-fraction-static to {self.mem_fraction_static:.3f} "
                f"because this is a multimodal model."
            )

            if self.model_config.hf_config.architectures == [
                "MllamaForConditionalGeneration"
            ]:
                logger.info("Automatically turn off --chunked-prefill-size for mllama.")
                server_args.chunked_prefill_size = -1

            if self.model_config.hf_config.architectures == [
                "Qwen2VLForConditionalGeneration"
263
264
            ] or self.model_config.hf_config.architectures == [
                "Qwen2_5_VLForConditionalGeneration"
265
            ]:
266
                # TODO: qwen2-vl series does not support radix cache now, set disable_radix_cache=True automatically
267
                logger.info(
268
                    "Automatically turn off --chunked-prefill-size and disable radix cache for qwen-vl series."
269
270
271
272
                )
                server_args.chunked_prefill_size = -1
                server_args.disable_radix_cache = True

273
274
275
            if self.model_config.hf_config.architectures == ["DeepseekVL2ForCausalLM"]:
                # TODO: deepseek-vl2 does not support radix cache now, set disable_radix_cache=True automatically
                logger.info(
276
                    "Automatically turn off --chunked-prefill-size and disable radix cache for deepseek-vl2."
277
278
279
280
                )
                server_args.chunked_prefill_size = -1
                server_args.disable_radix_cache = True

281
282
283
284
285
286
        if server_args.enable_deepep_moe:
            logger.info("DeepEP is turned on.")
            assert (
                server_args.enable_dp_attention == True
            ), "Currently DeepEP is bind to Attention DP. Set '--enable-dp-attention --enable-deepep-moe'"

287
    def init_torch_distributed(self):
288
        logger.info("Init torch distributed begin.")
289

290
        torch.get_device_module(self.device).set_device(self.gpu_id)
Zhang, Liangang's avatar
Zhang, Liangang committed
291
292
        if self.device == "cuda":
            backend = "nccl"
293
        elif self.device == "xpu":
294
            backend = "xccl"
295
296
        elif self.device == "hpu":
            backend = "hccl"
297
298
        elif self.device == "cpu":
            backend = "gloo"
299

300
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
301
        if not self.server_args.enable_p2p_check:
302
303
            monkey_patch_p2p_access_check()

304
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
305
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
306
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
307
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
308
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
309
310

        if not self.is_draft_worker:
Mick's avatar
Mick committed
311
            # Only initialize the distributed environment on the target model worker.
312
313
314
315
316
317
            init_distributed_environment(
                backend=backend,
                world_size=self.tp_size,
                rank=self.tp_rank,
                local_rank=self.gpu_id,
                distributed_init_method=dist_init_method,
318
                timeout=self.server_args.dist_timeout,
319
320
            )
            initialize_model_parallel(tensor_model_parallel_size=self.tp_size)
321
322
323
324
325
326
            initialize_dp_attention(
                enable_dp_attention=self.server_args.enable_dp_attention,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                dp_size=self.server_args.dp_size,
            )
327

328
        min_per_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
329
            self.device, self.gpu_id, distributed=self.tp_size > 1
330
        )
331
        self.tp_group = get_tp_group()
332
        self.attention_tp_group = get_attention_tp_group()
333

334
        # Check memory for tensor parallelism
335
        local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
336
        if self.tp_size > 1:
337
            if min_per_gpu_memory < local_gpu_memory * 0.9:
338
                raise ValueError(
339
340
                    "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                    f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
341
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
342

343
344
345
        logger.info(
            f"Init torch distributed ends. mem usage={(before_avail_memory - local_gpu_memory):.2f} GB"
        )
346
        return min_per_gpu_memory
347

Lianmin Zheng's avatar
Lianmin Zheng committed
348
    def load_model(self):
349
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
350
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
351
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
352
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
353
354

        # This can reduce thread conflicts and speed up weight loading.
355
356
        if self.device != "cpu":
            torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
357
358
359
360
361
362
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
                self.server_args.dtype = "float16"
363
                self.model_config.dtype = torch.float16
Zhang, Liangang's avatar
Zhang, Liangang committed
364
365
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
366

367
368
        set_cuda_arch()

369
        # Prepare the model config
370
371
372
373
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
        )
374
375
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
376
377

        # Load the model
378
379
        # Remove monkey_patch when linear.py quant remove dependencies with vllm
        monkey_patch_vllm_parallel_state()
380
381
        monkey_patch_isinstance_for_vllm_base_layer()

382
383
384
385
386
387
        with self.memory_saver_adapter.region():
            self.model = get_model(
                model_config=self.model_config,
                load_config=self.load_config,
                device_config=DeviceConfig(self.device),
            )
388
        monkey_patch_vllm_parallel_state(reverse=True)
389
        monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
390

bjmsong's avatar
bjmsong committed
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
        if self.server_args.kv_cache_dtype == "fp8_e4m3":
            if self.server_args.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.server_args.quantization_param_path
                    )
                    logger.info(
                        "Loaded KV cache scaling factors from %s",
                        self.server_args.quantization_param_path,
                    )
                else:
                    raise RuntimeError(
                        "Using FP8 KV cache and scaling factors provided but "
                        "model %s does not support loading scaling factors.",
                        self.model.__class__,
                    )
            else:
                logger.warning(
                    "Using FP8 KV cache but no scaling factors "
                    "provided. Defaulting to scaling factors of 1.0. "
                    "This may lead to less accurate results!"
                )

414
        # Parse other args
415
        self.sliding_window_size = (
416
417
            self.model.get_attention_sliding_window_size()
            if hasattr(self.model, "get_attention_sliding_window_size")
418
419
            else None
        )
420
        self.dtype = self.model_config.dtype
421

422
        after_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
423
        logger.info(
424
            f"Load weight end. "
425
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
426
            f"dtype={self.dtype}, "
427
428
            f"avail mem={after_avail_memory:.2f} GB, "
            f"mem usage={(before_avail_memory - after_avail_memory):.2f} GB."
429
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
430

431
432
433
434
435
436
437
438
439
440
441
442
        # Handle the case where some ranks do not finish loading.
        try:
            dist.monitored_barrier(
                group=get_tp_group().cpu_group,
                timeout=datetime.timedelta(seconds=UNBALANCED_MODEL_LOADING_TIMEOUT_S),
                wait_all_ranks=True,
            )
        except RuntimeError:
            raise ValueError(
                f"TP rank {self.tp_rank} could finish the model loading, but there are other ranks that didn't finish loading. It is likely due to unexpected failures (e.g., OOM) or a slow node."
            ) from None

443
444
445
446
    def update_weights_from_disk(
        self, model_path: str, load_format: str
    ) -> tuple[bool, str]:
        """Update engine weights in-place from the disk."""
447
        logger.info(
Chayenne's avatar
Chayenne committed
448
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
449
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
450
451
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
452
        target_device = torch.device(self.device)
453
        self.model_config.model_path = model_path
454
455
        load_config = LoadConfig(load_format=load_format)

Lianmin Zheng's avatar
Lianmin Zheng committed
456
        # Only support DefaultModelLoader for now
457
458
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
459
460
            message = f"Failed to get model loader: {loader}."
            return False, message
461
462
463

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
464
                DefaultModelLoader.Source(
465
                    config.model_path,
466
467
468
469
470
                    revision=config.revision,
                    fall_back_to_pt=getattr(
                        self.model, "fall_back_to_pt_during_load", True
                    ),
                )
471
472
473
474
475
476
477
478
479
480
481
482
            )
            return iter

        def model_load_weights(model, iter):
            model.load_weights(iter)
            for _, module in self.model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    with device_loading_context(module, target_device):
                        quant_method.process_weights_after_loading(module)
            return model

483
        with set_default_torch_dtype(self.model_config.dtype):
484
            try:
485
                iter = get_weight_iter(self.model_config)
486
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
487
                message = f"Failed to get weights iterator: {e}."
488
489
490
491
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
492
493
494
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
495
496
                del iter
                gc.collect()
497
                iter = get_weight_iter(self.model_config)
498
499
500
501
502
503
504
505
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.load_config = load_config

506
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
507
        return True, "Succeeded to update model weights."
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    def init_weights_update_group(
        self,
        master_address,
        master_port,
        rank_offset,
        world_size,
        group_name,
        backend="nccl",
    ):
        """Initialize the Torch process group for model parameter updates.

        `_model_update_group` is used in the RLHF workflow, where rank
        0 is the actor model in the training engine, and the other ranks are
        the inference engine, which is used for rollout.

        In the RLHF workflow, the training engine updates the model
        weights/parameters online, and broadcasts them to the inference
        engine through the `_model_update_group` process group.
        """
        assert (
            torch.distributed.is_initialized()
        ), "Default torch process group must be initialized"
        assert group_name != "", "Group name cannot be empty"

        rank = rank_offset + self.tp_rank

        logger.info(
            f"init custom process group: master_address={master_address}, master_port={master_port}, "
537
            f"rank_offset={rank_offset}, rank={rank}, world_size={world_size}, group_name={group_name}, backend={backend}"
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
        )

        try:
            self._model_update_group = init_custom_process_group(
                backend=backend,
                init_method=f"tcp://{master_address}:{master_port}",
                world_size=world_size,
                rank=rank,
                group_name=group_name,
            )
            dist.barrier(group=self._model_update_group, device_ids=[rank])
            return True, "Succeeded to initialize custom process group."
        except Exception as e:
            message = f"Failed to initialize custom process group: {e}."
            logger.error(message)
            return False, message

    def update_weights_from_distributed(self, name, dtype, shape):
        """
        Update specific parameter in the model weights online
        through `_model_update_group` process group.

        Args:
            name: the name of the parameter to be updated.
            dtype: the data type of the parameter to be updated.
            shape: the shape of the parameter to be updated.
        """
        target_dtype = (
            dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
        )

        assert (
            self._model_update_group is not None
        ), "model update group must be initialized"

        try:
            weights = torch.empty(shape, dtype=target_dtype, device=self.device)
            torch.distributed.broadcast(weights, src=0, group=self._model_update_group)
            self.model.load_weights([(name, weights)])
            return True, f"Succeeded to update parameter {name} online."

        except Exception as e:
            error_msg = (
                f"Failed to update parameter online: {e}. "
                f"The full weights of the ModelRunner are partially updated. "
                f"Please discard the whole weights."
            )
            logger.error(error_msg)
            return False, error_msg

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def update_weights_from_tensor(
        self,
        named_tensors: List[Tuple[str, Union[torch.Tensor, "LocalSerializedTensor"]]],
        load_format: Optional[str] = None,
    ):
        named_tensors = [
            (name, _unwrap_tensor(tensor, tp_rank=self.tp_rank))
            for name, tensor in named_tensors
        ]
        if load_format == "direct":
            _model_load_weights_direct(self.model, named_tensors)
        elif load_format is None:
            self.model.load_weights(named_tensors)
        else:
            raise NotImplementedError(f"Unknown load_format={load_format}")
603
        return True, "Success"
604

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

622
623
624
625
626
627
628
629
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            lora_paths=self.server_args.lora_paths,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
630
            lora_backend=self.server_args.lora_backend,
631
632
            tp_size=self.tp_size,
            tp_rank=self.tp_rank,
633
634
635
        )
        logger.info("LoRA manager ready.")

636
    def profile_max_num_token(self, total_gpu_memory: int):
637
        available_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
638
            self.device, self.gpu_id, distributed=self.tp_size > 1
639
        )
640
641
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
642
            and not self.server_args.disable_mla
643
644
645
646
        ):
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
                * self.model_config.num_hidden_layers
647
                * torch._utils._element_size(self.kv_cache_dtype)
648
649
650
            )
        else:
            cell_size = (
651
                self.model_config.get_num_kv_heads(get_attention_tp_size())
652
653
654
                * self.model_config.head_dim
                * self.model_config.num_hidden_layers
                * 2
655
                * torch._utils._element_size(self.kv_cache_dtype)
656
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
657
658
659
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
660
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
661
662
        return max_num_token

663
    def init_memory_pool(
664
665
        self,
        total_gpu_memory: int,
666
667
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
668
    ):
669
670
671
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
672
            if is_hip():  # Using natively supported format
HAI's avatar
HAI committed
673
674
675
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
bjmsong's avatar
bjmsong committed
676
677
678
        elif self.server_args.kv_cache_dtype == "fp8_e4m3":
            if is_cuda():
                self.kv_cache_dtype = torch.float8_e4m3fn
679
680
681
682
683
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

684
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
685
686
687
688
689
690
691
692
693
694
695
696

        if max_num_reqs is None:
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
                4096,
            )

697
698
699
        if SGLANG_CI_SMALL_KV_SIZE:
            self.max_total_num_tokens = int(SGLANG_CI_SMALL_KV_SIZE)

700
701
702
        if not self.spec_algorithm.is_none():
            if self.is_draft_worker:
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
703
                max_num_reqs = self.server_args.max_num_reqs
704
            else:
705
706
                # We are sharing the `token_to_kv_pool`, and both verify and draft tokens
                # can be concurrently allocated, so we should give a headroom for it.
707
708
                self.server_args.draft_runner_cache_size = (
                    self.max_total_num_tokens
709
710
711
712
713
714
715
                    # draft
                    + max_num_reqs
                    * self.server_args.speculative_num_steps
                    * self.server_args.speculative_eagle_topk
                    # verify
                    + max_num_reqs * self.server_args.speculative_num_draft_tokens
                    # buffer
716
717
                    + 100
                )
718
719
720
721
                # Target worker and draft worker shares the same indices for the
                # token_to_kv_pool, so we should make sure to match max_total_num_tokens.
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
                self.server_args.max_num_reqs = max_num_reqs
722

723
724
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
725
                logging.warning(
726
727
728
729
730
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
731

732
733
734
735
736
737
        self.max_total_num_tokens = (
            self.max_total_num_tokens
            // self.server_args.page_size
            * self.server_args.page_size
        )

738
        if self.max_total_num_tokens <= 0:
739
            raise RuntimeError(
740
                "Not enough memory. Please try to increase --mem-fraction-static."
741
            )
742

743
744
745
746
747
748
749
750
751
752
753
        if self.req_to_token_pool is None:
            self.req_to_token_pool = ReqToTokenPool(
                size=max_num_reqs + 1,
                max_context_len=self.model_config.context_len + 4,
                device=self.device,
                enable_memory_saver=self.server_args.enable_memory_saver,
            )
        else:
            # Draft worker shares req_to_token_pool with the target worker.
            assert self.is_draft_worker

754
755
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
756
            and not self.server_args.disable_mla
757
758
759
        ):
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
760
                page_size=self.page_size,
761
                dtype=self.kv_cache_dtype,
762
763
764
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
765
                device=self.device,
766
                enable_memory_saver=self.server_args.enable_memory_saver,
767
            )
Shuo Yang's avatar
Shuo Yang committed
768
769
770
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
771
                page_size=self.page_size,
Shuo Yang's avatar
Shuo Yang committed
772
                dtype=self.kv_cache_dtype,
773
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
Shuo Yang's avatar
Shuo Yang committed
774
775
776
777
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
778
                enable_memory_saver=self.server_args.enable_memory_saver,
Shuo Yang's avatar
Shuo Yang committed
779
            )
780
781
782
        else:
            self.token_to_kv_pool = MHATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
783
                page_size=self.page_size,
784
                dtype=self.kv_cache_dtype,
785
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
786
787
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
788
                device=self.device,
789
                enable_memory_saver=self.server_args.enable_memory_saver,
790
            )
791
792

        if self.token_to_kv_pool_allocator is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
            if self.page_size == 1:
                self.token_to_kv_pool_allocator = TokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
            else:
                self.token_to_kv_pool_allocator = PagedTokenToKVPoolAllocator(
                    self.max_total_num_tokens,
                    page_size=self.page_size,
                    dtype=self.kv_cache_dtype,
                    device=self.device,
                    kvcache=self.token_to_kv_pool,
                )
808
809
810
        else:
            assert self.is_draft_worker

811
        logger.info(
812
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
813
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
814
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
815

Lianmin Zheng's avatar
Lianmin Zheng committed
816
817
818
819
820
821
822
823
824
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

825
826
    def init_attention_backend(self):
        """Init attention kernel backend."""
827
        if self.server_args.attention_backend == "flashinfer":
828
829
830
831
            from sglang.srt.layers.attention.flashinfer_backend import (
                FlashInferAttnBackend,
            )

832
833
834
835
836
837
838
839
840
841
842
843
844
845
            # Init streams
            if self.server_args.speculative_algorithm == "EAGLE":
                self.plan_stream_for_flashinfer = torch.cuda.Stream()
            self.attn_backend = FlashInferAttnBackend(self)
        elif self.server_args.attention_backend == "triton":
            assert self.sliding_window_size is None, (
                "Window attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            assert not self.model_config.is_encoder_decoder, (
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            if self.server_args.enable_double_sparsity:
846
847
848
849
                from sglang.srt.layers.attention.double_sparsity_backend import (
                    DoubleSparseAttnBackend,
                )

850
                self.attn_backend = DoubleSparseAttnBackend(self)
851
            else:
852
853
                from sglang.srt.layers.attention.triton_backend import TritonAttnBackend

854
855
                self.attn_backend = TritonAttnBackend(self)
        elif self.server_args.attention_backend == "torch_native":
856
857
858
859
            from sglang.srt.layers.attention.torch_native_backend import (
                TorchNativeAttnBackend,
            )

860
861
            self.attn_backend = TorchNativeAttnBackend(self)
        elif self.server_args.attention_backend == "flashinfer_mla":
862
863
864
865
            from sglang.srt.layers.attention.flashinfer_mla_backend import (
                FlashInferMLAAttnBackend,
            )

866
            self.attn_backend = FlashInferMLAAttnBackend(self)
lukec's avatar
lukec committed
867
868
869
870
        elif self.server_args.attention_backend == "flashmla":
            from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend

            self.attn_backend = FlashMLABackend(self)
871
872
873
874
875
876
877
878
879
880
881
882
883
        elif self.server_args.attention_backend == "fa3":
            assert torch.cuda.get_device_capability()[0] >= 9, (
                "FlashAttention v3 Backend requires SM>=90. "
                "Please use `--attention-backend flashinfer`."
            )
            logger.warning(
                "FlashAttention v3 Backend is in Beta. Multimodal, Page > 1, FP8, MLA and Speculative Decoding are not supported."
            )
            from sglang.srt.layers.attention.flashattention_backend import (
                FlashAttentionBackend,
            )

            self.attn_backend = FlashAttentionBackend(self)
884
885
886
887
        else:
            raise ValueError(
                f"Invalid attention backend: {self.server_args.attention_backend}"
            )
888

Shuo Yang's avatar
Shuo Yang committed
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    def init_double_sparsity_channel_config(self, selected_channel):
        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

        for i in range(self.model_config.num_hidden_layers):
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

906
    def init_cuda_graphs(self):
907
        """Capture cuda graphs."""
908
909
        self.cuda_graph_runner = None

910
911
912
913
        if not self.is_generation:
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
            return

914
915
        if self.server_args.disable_cuda_graph:
            return
916

917
        tic = time.time()
918
        before_mem = get_available_gpu_memory(self.device, self.gpu_id)
919
        logger.info(
920
            f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
921
        )
922
        self.cuda_graph_runner = CudaGraphRunner(self)
923
        after_mem = get_available_gpu_memory(self.device, self.gpu_id)
924
        logger.info(
925
926
            f"Capture cuda graph end. Time elapsed: {time.time() - tic:.2f} s. "
            f"avail mem={after_mem:.2f} GB. mem usage={(before_mem - after_mem):.2f} GB."
927
        )
928

929
930
931
932
933
934
935
    def apply_torch_tp(self):
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

936
    def forward_decode(self, forward_batch: ForwardBatch):
937
        self.attn_backend.init_forward_metadata(forward_batch)
938
        return self.model.forward(
939
            forward_batch.input_ids, forward_batch.positions, forward_batch
Lianmin Zheng's avatar
Lianmin Zheng committed
940
941
        )

942
943
944
945
946
947
    def forward_extend(
        self, forward_batch: ForwardBatch, skip_attn_backend_init: bool = False
    ):
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)

948
        if self.is_generation:
Rin Intachuen's avatar
Rin Intachuen committed
949
950
951
952
953
954
955
956
957
958
959
            if forward_batch.input_embeds is None:
                return self.model.forward(
                    forward_batch.input_ids, forward_batch.positions, forward_batch
                )
            else:
                return self.model.forward(
                    forward_batch.input_ids,
                    forward_batch.positions,
                    forward_batch,
                    input_embeds=forward_batch.input_embeds.bfloat16(),
                )
960
961
962
        else:
            # Only embedding models have get_embedding parameter
            return self.model.forward(
963
964
965
                forward_batch.input_ids,
                forward_batch.positions,
                forward_batch,
966
967
                get_embedding=True,
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
968

Ke Bao's avatar
Ke Bao committed
969
970
971
972
973
    def forward_idle(self, forward_batch: ForwardBatch):
        return self.model.forward(
            forward_batch.input_ids, forward_batch.positions, forward_batch
        )

974
975
976
    def forward(
        self, forward_batch: ForwardBatch, skip_attn_backend_init: bool = False
    ) -> LogitsProcessorOutput:
977
978
979
980
981
        if (
            forward_batch.forward_mode.is_cuda_graph()
            and self.cuda_graph_runner
            and self.cuda_graph_runner.can_run(forward_batch)
        ):
982
983
984
            return self.cuda_graph_runner.replay(
                forward_batch, skip_attn_backend_init=skip_attn_backend_init
            )
985

986
987
988
        if forward_batch.forward_mode.is_decode():
            return self.forward_decode(forward_batch)
        elif forward_batch.forward_mode.is_extend():
989
990
991
            return self.forward_extend(
                forward_batch, skip_attn_backend_init=skip_attn_backend_init
            )
Ke Bao's avatar
Ke Bao committed
992
993
        elif forward_batch.forward_mode.is_idle():
            return self.forward_idle(forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
994
        else:
995
            raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode}")
996

997
998
999
    def _preprocess_logits(
        self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
    ):
1000
        # Apply logit bias
1001
1002
1003
1004
1005
1006
1007
1008
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
1009
1010
        sampling_info.apply_logits_bias(logits_output.next_token_logits)

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    def sample(
        self,
        logits_output: LogitsProcessorOutput,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        """Sample and compute logprobs and update logits_output.

        Args:
            logits_output: The logits output from the model forward
            forward_batch: The forward batch that generates logits_output

        Returns:
            A list of next_token_ids
        """
        # For duplex models with multiple output streams.
        if isinstance(logits_output, tuple):
            return torch.stack(
                [self.sample(values, forward_batch) for values in logits_output],
                axis=-1,
            )

        self._preprocess_logits(logits_output, forward_batch.sampling_info)

1034
1035
1036
        # Sample the next tokens
        next_token_ids = self.sampler(
            logits_output,
1037
            forward_batch.sampling_info,
1038
1039
            forward_batch.return_logprob,
            forward_batch.top_logprobs_nums,
1040
            forward_batch.token_ids_logprobs,
1041
        )
1042
1043
        return next_token_ids

Yineng Zhang's avatar
Yineng Zhang committed
1044
1045
1046
1047
1048
1049
1050
1051
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
        rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {})
        if rope_scaling is None:
            return False
        return rope_scaling.get("type", None) == "mrope"
1052

1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
    def save_remote_model(self, url: str):
        from sglang.srt.model_loader.loader import RemoteModelLoader

        logger.info(f"Saving model to {url}")
        RemoteModelLoader.save_model(self.model, self.model_config.model_path, url)

    def save_sharded_model(
        self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None
    ):
        from sglang.srt.model_loader.loader import ShardedStateLoader

        logger.info(
            f"Save sharded model to {path} with pattern {pattern} and max_size {max_size}"
        )
        ShardedStateLoader.save_model(self.model, path, pattern, max_size)

1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tensor]]):
    params_dict = dict(model.named_parameters())
    for name, tensor in named_tensors:
        default_weight_loader(params_dict[name], tensor)


def _unwrap_tensor(tensor, tp_rank):
    if isinstance(tensor, LocalSerializedTensor):
        return tensor.get(tp_rank)
    return tensor


@dataclass
class LocalSerializedTensor:
    """torch.Tensor that gets serialized by MultiprocessingSerializer (which only serializes a pointer and not the data).
    The i-th element in the list corresponds to i-th rank's GPU."""

    values: List[bytes]

    def get(self, rank: int):
        return MultiprocessingSerializer.deserialize(self.values[rank])