model_runner.py 71.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import datetime
17
import gc
18
import inspect
Shuo Yang's avatar
Shuo Yang committed
19
import json
20
import logging
21
import os
22
import time
23
24
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26

import torch
27
import torch.distributed as dist
28
29
30
31

from sglang.srt.configs.device_config import DeviceConfig
from sglang.srt.configs.load_config import LoadConfig
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
32
from sglang.srt.configs.update_config import adjust_config_with_unaligned_cpu_tp
33
from sglang.srt.constants import GPU_MEMORY_TYPE_WEIGHTS
34
from sglang.srt.distributed import (
zhyncs's avatar
zhyncs committed
35
    get_tp_group,
36
    get_world_group,
zhyncs's avatar
zhyncs committed
37
38
    init_distributed_environment,
    initialize_model_parallel,
39
    set_custom_all_reduce,
40
    set_mscclpp_all_reduce,
zhyncs's avatar
zhyncs committed
41
)
42
from sglang.srt.distributed.parallel_state import monkey_patch_vllm_parallel_state
fzyzcjy's avatar
fzyzcjy committed
43
44
45
46
47
48
49
50
51
52
53
54
55
from sglang.srt.eplb.eplb_manager import EPLBManager
from sglang.srt.eplb.expert_distribution import (
    ExpertDistributionRecorder,
    get_global_expert_distribution_recorder,
    set_global_expert_distribution_recorder,
)
from sglang.srt.eplb.expert_location import (
    ExpertLocationMetadata,
    compute_initial_expert_location_metadata,
    get_global_expert_location_metadata,
    set_global_expert_location_metadata,
)
from sglang.srt.eplb.expert_location_updater import ExpertLocationUpdater
56
from sglang.srt.layers.attention.tbo_backend import TboAttnBackend
57
58
from sglang.srt.layers.dp_attention import (
    get_attention_tp_group,
59
    get_attention_tp_size,
60
61
    initialize_dp_attention,
)
Liangsheng Yin's avatar
Liangsheng Yin committed
62
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
63
64
65
from sglang.srt.layers.quantization import (
    deep_gemm_wrapper,
    monkey_patch_isinstance_for_vllm_base_layer,
66
)
67
from sglang.srt.layers.sampler import Sampler
68
from sglang.srt.layers.torchao_utils import apply_torchao_config_to_model
69
from sglang.srt.layers.utils import is_sm100_supported
70
from sglang.srt.lora.lora_manager import LoRAManager
71
from sglang.srt.lora.lora_registry import LoRARef
72
73
74
75
from sglang.srt.managers.schedule_batch import (
    GLOBAL_SERVER_ARGS_KEYS,
    global_server_args_dict,
)
76
from sglang.srt.mem_cache.allocator import (
77
    AscendPagedTokenToKVPoolAllocator,
78
79
    BaseTokenToKVPoolAllocator,
    PagedTokenToKVPoolAllocator,
tarinkk's avatar
tarinkk committed
80
    SWATokenToKVPoolAllocator,
81
82
    TokenToKVPoolAllocator,
)
83
from sglang.srt.mem_cache.memory_pool import (
84
85
    AscendMLAPagedTokenToKVPool,
    AscendTokenToKVPool,
Shuo Yang's avatar
Shuo Yang committed
86
    DoubleSparseTokenToKVPool,
87
88
89
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
tarinkk's avatar
tarinkk committed
90
    SWAKVPool,
91
)
Yineng Zhang's avatar
Yineng Zhang committed
92
from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner
93
from sglang.srt.model_executor.forward_batch_info import ForwardBatch, PPProxyTensors
94
from sglang.srt.model_loader import get_model
95
from sglang.srt.model_loader.loader import DefaultModelLoader, get_model_loader
Lianmin Zheng's avatar
Lianmin Zheng committed
96
from sglang.srt.model_loader.utils import set_default_torch_dtype
97
from sglang.srt.model_loader.weight_utils import default_weight_loader
98
from sglang.srt.patch_torch import monkey_patch_torch_reductions
99
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
100
from sglang.srt.server_args import ServerArgs
101
from sglang.srt.speculative.spec_info import SpeculativeAlgorithm
102
from sglang.srt.torch_memory_saver_adapter import TorchMemorySaverAdapter
103
from sglang.srt.utils import (
104
    MultiprocessingSerializer,
105
    cpu_has_amx_support,
106
    dynamic_import,
107
    enable_show_time_cost,
108
    get_available_gpu_memory,
109
    get_bool_env_var,
110
    get_cpu_ids_by_node,
111
    init_custom_process_group,
112
    is_fa3_default_architecture,
113
    is_flashinfer_available,
HAI's avatar
HAI committed
114
    is_hip,
115
    is_hopper_with_cuda_12_3,
116
    is_no_spec_infer_or_topk_one,
117
    is_npu,
118
    monkey_patch_p2p_access_check,
119
    monkey_patch_vllm_gguf_config,
120
    set_cpu_offload_max_bytes,
121
    set_cuda_arch,
122
)
123

124
_is_hip = is_hip()
125
_is_npu = is_npu()
126
_is_cpu_amx_available = cpu_has_amx_support()
127

Lianmin Zheng's avatar
Lianmin Zheng committed
128
# Use a small KV cache pool size for tests in CI
129
SGLANG_CI_SMALL_KV_SIZE = os.getenv("SGLANG_CI_SMALL_KV_SIZE", None)
Lianmin Zheng's avatar
Lianmin Zheng committed
130
131

# Detect stragger ranks in model loading
132
133
UNBALANCED_MODEL_LOADING_TIMEOUT_S = 300

Lianmin Zheng's avatar
Lianmin Zheng committed
134
135
logger = logging.getLogger(__name__)

136

137
138
139
140
141
142
143
144
145
146
147
148
149
class RankZeroFilter(logging.Filter):
    """Filter that only allows INFO level logs from rank 0, but allows all other levels from any rank."""

    def __init__(self, is_rank_zero):
        super().__init__()
        self.is_rank_zero = is_rank_zero

    def filter(self, record):
        if record.levelno == logging.INFO:
            return self.is_rank_zero
        return True


Lianmin Zheng's avatar
Lianmin Zheng committed
150
class ModelRunner:
151
152
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
153
154
    def __init__(
        self,
155
        model_config: ModelConfig,
156
157
158
159
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
Cheng Wan's avatar
Cheng Wan committed
160
161
        moe_ep_rank: int,
        moe_ep_size: int,
162
163
        pp_rank: int,
        pp_size: int,
164
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
165
        server_args: ServerArgs,
166
        is_draft_worker: bool = False,
167
        req_to_token_pool: Optional[ReqToTokenPool] = None,
168
        token_to_kv_pool_allocator: Optional[BaseTokenToKVPoolAllocator] = None,
Lianmin Zheng's avatar
Lianmin Zheng committed
169
    ):
170
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
171
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
172
        self.device = server_args.device
173
        self.gpu_id = gpu_id
174
175
176
177

        # Apply the rank zero filter to logger
        if not any(isinstance(f, RankZeroFilter) for f in logger.filters):
            logger.addFilter(RankZeroFilter(tp_rank == 0))
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Cheng Wan's avatar
Cheng Wan committed
180
181
        self.moe_ep_rank = moe_ep_rank
        self.moe_ep_size = moe_ep_size
182
        self.dp_size = server_args.dp_size
183
184
        self.pp_rank = pp_rank
        self.pp_size = pp_size
185
        self.model_config = model_config
Zhang, Liangang's avatar
Zhang, Liangang committed
186
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
187
        self.server_args = server_args
188
        self.is_draft_worker = is_draft_worker
189
190
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
191
192
193
        self.is_multimodal_chunked_prefill_supported = (
            model_config.is_multimodal_chunked_prefill_supported
        )
194
195
196
        self.spec_algorithm = SpeculativeAlgorithm.from_string(
            server_args.speculative_algorithm
        )
197
        self.page_size = server_args.page_size
198
199
        self.req_to_token_pool = req_to_token_pool
        self.token_to_kv_pool_allocator = token_to_kv_pool_allocator
tarinkk's avatar
tarinkk committed
200
        self.is_hybrid = model_config.is_hybrid
Baizhou Zhang's avatar
Baizhou Zhang committed
201
        self.use_mla_backend = self.model_config.attention_arch == AttentionArch.MLA
Chang Su's avatar
Chang Su committed
202
        self.attention_chunk_size = model_config.attention_chunk_size
Ke Bao's avatar
Ke Bao committed
203

204
205
        self.forward_pass_id = 0

206
        # Model-specific adjustment
207
        self.model_specific_adjustment()
Shuo Yang's avatar
Shuo Yang committed
208

209
210
        if server_args.show_time_cost:
            enable_show_time_cost()
211
212

        # Global vars
213
        global_server_args_dict.update(
214
215
216
            {k: getattr(server_args, k) for k in GLOBAL_SERVER_ARGS_KEYS}
            | {
                # TODO it is indeed not a "server args"
217
                "use_mla_backend": self.use_mla_backend,
218
                "speculative_algorithm": self.spec_algorithm,
219
220
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
221

222
        # CPU offload
223
224
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

225
226
227
228
        # Init OpenMP threads binding for CPU
        if self.device == "cpu":
            self.init_threads_binding()

229
        # Get memory before model loading
230
        min_per_gpu_memory = self.init_torch_distributed()
231

232
        # Update deep gemm configure
233
234
        if deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
            deep_gemm_wrapper.update_deep_gemm_config(gpu_id, server_args)
235

Lianmin Zheng's avatar
Lianmin Zheng committed
236
        # If it is a draft model, tp_group can be different
237
238
        self.initialize(min_per_gpu_memory)

239
240
241
242
        # temporary cached values
        self.support_pp = (
            "pp_proxy_tensors" in inspect.signature(self.model.forward).parameters
        )
243
        self._model_update_group = {}
244

245
246
    def initialize(self, min_per_gpu_memory: float):
        server_args = self.server_args
247

248
249
250
251
        self.memory_saver_adapter = TorchMemorySaverAdapter.create(
            enable=self.server_args.enable_memory_saver
        )

252
253
254
255
256
257
258
259
        if not self.is_draft_worker:
            set_global_expert_location_metadata(
                compute_initial_expert_location_metadata(server_args, self.model_config)
            )
            if self.tp_rank == 0 and get_bool_env_var(
                "SGLANG_LOG_EXPERT_LOCATION_METADATA"
            ):
                logger.info(
260
                    f"Initial expert_location_metadata: {get_global_expert_location_metadata()}"
261
262
263
264
265
266
267
268
269
270
                )

            set_global_expert_distribution_recorder(
                ExpertDistributionRecorder.init_new(
                    server_args,
                    get_global_expert_location_metadata(),
                    rank=self.tp_rank,
                )
            )

271
272
273
274
275
        self.eplb_manager = (
            EPLBManager(self)
            if self.server_args.enable_eplb and (not self.is_draft_worker)
            else None
        )
276
        self.expert_location_updater = ExpertLocationUpdater()
277

278
        # Load the model
279
        self.sampler = Sampler()
280
        self.load_model()
281

282
        # Check if the model is using hybrid SWA
Hanming Lu's avatar
Hanming Lu committed
283
284
285
286
287
288
289
290
291
        if (
            not self.server_args.disable_hybrid_swa_memory
            and self.sliding_window_size is not None
            and self.sliding_window_size > 0
        ):
            architectures = self.model_config.hf_config.architectures
            if architectures and not any("Llama4" in arch for arch in architectures):
                self.is_hybrid = self.model_config.is_hybrid = True

292
293
294
295
296
297
298
299
        # For MTP models like DeepSeek-V3 or GLM-4.5, the MTP layer(s) are used separately as draft
        # models for speculative decoding. In those cases, `num_nextn_predict_layers` is used to
        # determine the number of layers.
        model_has_mtp_layers = self.model_config.num_nextn_predict_layers is not None
        model_num_layers = (
            self.model_config.num_nextn_predict_layers
            if self.is_draft_worker and model_has_mtp_layers
            else self.model_config.num_hidden_layers
300
        )
301
302
        self.start_layer = getattr(self.model, "start_layer", 0)
        self.end_layer = getattr(self.model, "end_layer", model_num_layers)
303
        self.num_effective_layers = self.end_layer - self.start_layer
304
305
306
        assert (not model_has_mtp_layers) or (
            self.num_effective_layers == model_num_layers
        ), "PP is not compatible with MTP models."
307

308
        # Apply torchao quantization
309
310
311
312
313
314
        torchao_applied = getattr(self.model, "torchao_applied", False)
        # In layered loading, torchao may have been applied
        if not torchao_applied:
            apply_torchao_config_to_model(
                self.model, global_server_args_dict["torchao_config"]
            )
315

316
        # Apply torch TP if the model supports it
317
318
319
320
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()

321
        # Init lora
322
        if server_args.enable_lora:
323
            self.init_lora_manager()
324
325

        # Init memory pool and attention backends
326
327
        self.init_memory_pool(
            min_per_gpu_memory,
328
            server_args.max_running_requests,
329
330
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
331
332
333
334
335
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
336
            self.cuda_graph_runner = None
337
            self.cuda_graph_mem_usage = 0
Zhang, Liangang's avatar
Zhang, Liangang committed
338
            self.init_attention_backend()
339

James Liu's avatar
James Liu committed
340
341
        # auxiliary hidden capture mode. TODO: expose this to server args?
        if self.spec_algorithm.is_eagle3() and not self.is_draft_worker:
lukec's avatar
lukec committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
            # load draft config
            draft_model_config = ModelConfig.from_server_args(
                server_args,
                model_path=(server_args.speculative_draft_model_path),
                is_draft_model=True,
            )

            try:
                # get the aux layer from draft model config
                eagle_config = getattr(
                    draft_model_config.hf_config, "eagle_config", None
                )
                eagle_aux_hidden_state_layer_ids = eagle_config[
                    "eagle_aux_hidden_state_layer_ids"
                ]
            except:
                # if there is no aux layer, set to None
                eagle_aux_hidden_state_layer_ids = None

            self.model.set_eagle3_layers_to_capture(eagle_aux_hidden_state_layer_ids)
James Liu's avatar
James Liu committed
362

363
364
365
    def model_specific_adjustment(self):
        server_args = self.server_args

366
367
368
        if (
            server_args.attention_backend == "intel_amx"
            and server_args.device == "cpu"
369
            and not _is_cpu_amx_available
370
371
372
373
374
375
        ):
            logger.info(
                "The current platform does not support Intel AMX, will fallback to torch_native backend."
            )
            server_args.attention_backend = "torch_native"

376
        if server_args.attention_backend is None:
377
            """
Lianmin Zheng's avatar
Lianmin Zheng committed
378
379
            Auto select the fastest attention backend.

380
381
382
383
384
            1. Models with MHA Architecture (e.g: Llama, QWen)
                1.1 We will turn on FA3 on hopper unless user use spec decode with topk > 1 or page_size > 1.
                1.2 In other cases, we will use flashinfer if available, otherwise use triton.
            2. Models with MLA Architecture and using FA3
                2.1 We will use FA3 backend on hopper.
385
386
                2.2 We will use Flashinfer backend on blackwell.
                2.3 Otherwise, we will use triton backend.
387
388
            """

389
            if not self.use_mla_backend:
Lianmin Zheng's avatar
Lianmin Zheng committed
390
                # MHA architecture
391
                if (
392
                    is_hopper_with_cuda_12_3()
393
394
                    and is_no_spec_infer_or_topk_one(server_args)
                    and is_fa3_default_architecture(self.model_config.hf_config)
Zhiqiang Xie's avatar
Zhiqiang Xie committed
395
                    and (not server_args.enable_hierarchical_cache)
396
397
                ):
                    server_args.attention_backend = "fa3"
398
399
                elif _is_hip:
                    server_args.attention_backend = "aiter"
400
401
                elif _is_npu:
                    server_args.attention_backend = "ascend"
402
403
404
405
                else:
                    server_args.attention_backend = (
                        "flashinfer" if is_flashinfer_available() else "triton"
                    )
406
            else:
Lianmin Zheng's avatar
Lianmin Zheng committed
407
                # MLA architecture
Zhiqiang Xie's avatar
Zhiqiang Xie committed
408
409
410
                if is_hopper_with_cuda_12_3() and (
                    not server_args.enable_hierarchical_cache
                ):
411
                    server_args.attention_backend = "fa3"
412
413
                elif is_sm100_supported():
                    server_args.attention_backend = "flashinfer"
414
415
416
417
418
419
420
421
422
                elif _is_hip:
                    head_num = self.model_config.get_num_kv_heads(self.tp_size)
                    # TODO current aiter only support head number 16 or 128 head number
                    if (
                        head_num == 128 or head_num == 16
                    ) and self.spec_algorithm.is_none():
                        server_args.attention_backend = "aiter"
                    else:
                        server_args.attention_backend = "triton"
423
424
                elif _is_npu:
                    server_args.attention_backend = "ascend"
425
426
                else:
                    server_args.attention_backend = "triton"
427
            logger.info(
428
                f"Attention backend not explicitly specified. Use {server_args.attention_backend} backend by default."
429
            )
430
        elif self.use_mla_backend:
431
            if server_args.device != "cpu":
432
                if server_args.attention_backend in [
433
                    "aiter",
434
435
436
437
                    "flashinfer",
                    "fa3",
                    "triton",
                    "flashmla",
438
                    "cutlass_mla",
439
                    "ascend",
440
                ]:
441
442
443
                    logger.info(
                        f"MLA optimization is turned on. Use {server_args.attention_backend} backend."
                    )
444
                else:
445
446
447
448
                    raise ValueError(
                        f"Invalid attention backend for MLA: {server_args.attention_backend}"
                    )
            else:
449
450
451
452
                if server_args.attention_backend != "intel_amx":
                    raise ValueError(
                        "MLA optimization not supported on CPU except for intel_amx backend."
                    )
453

454
455
456
457
458
459
460
461
462
463
        if (
            server_args.attention_backend == "fa3"
            and server_args.kv_cache_dtype == "fp8_e5m2"
        ):
            logger.warning(
                "FlashAttention3 only supports fp8_e4m3 if using FP8; "
                "Setting attention backend to triton."
            )
            server_args.attention_backend = "triton"

464
        if server_args.enable_double_sparsity:
465
466
467
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
468
469
470
471
472
473
474
475
476
            server_args.attention_backend = "triton"
            server_args.disable_cuda_graph = True
            if server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(server_args.ds_heavy_channel_type)

        if self.is_multimodal:
477
478
479
            if not self.is_multimodal_chunked_prefill_supported:
                server_args.chunked_prefill_size = -1
                logger.info(
480
                    f"Automatically turn off --chunked-prefill-size as it is not supported for "
481
482
                    f"{self.model_config.hf_config.model_type}"
                )
483

484
485
486
        if not self.use_mla_backend:
            server_args.disable_chunked_prefix_cache = True
        elif self.page_size > 1:
487
            logger.info("Disable chunked prefix cache when page size > 1.")
488
489
490
            server_args.disable_chunked_prefix_cache = True

        if not server_args.disable_chunked_prefix_cache:
491
            logger.info("Chunked prefix cache is turned on.")
492

kk's avatar
kk committed
493
494
495
496
        if server_args.attention_backend == "aiter":
            if self.model_config.context_len > 8192:
                self.mem_fraction_static *= 0.85

497
    def init_torch_distributed(self):
498
        logger.info("Init torch distributed begin.")
499

500
501
502
503
504
505
506
507
        try:
            torch.get_device_module(self.device).set_device(self.gpu_id)
        except Exception:
            logger.warning(
                f"Context: {self.device=} {self.gpu_id=} {os.environ.get('CUDA_VISIBLE_DEVICES')=} {self.tp_rank=} {self.tp_size=}"
            )
            raise

Zhang, Liangang's avatar
Zhang, Liangang committed
508
509
        if self.device == "cuda":
            backend = "nccl"
510
        elif self.device == "xpu":
511
            backend = "xccl"
512
513
        elif self.device == "hpu":
            backend = "hccl"
514
515
        elif self.device == "cpu":
            backend = "gloo"
516
517
        elif self.device == "npu":
            backend = "hccl"
518

519
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
520
        if not self.server_args.enable_p2p_check:
521
522
            monkey_patch_p2p_access_check()

523
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
524
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
525
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
526
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
527
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
528
        set_mscclpp_all_reduce(self.server_args.enable_mscclpp)
529
530

        if not self.is_draft_worker:
531
532
533
534
            if self.device == "cpu":
                if _is_cpu_amx_available:
                    # Bind OpenMP threads to CPU cores
                    torch.ops.sgl_kernel.init_cpu_threads_env(self.local_omp_cpuid)
535
536
537
538

                    # Set local size to hint SGLang to use shared memory based AllReduce
                    os.environ["LOCAL_SIZE"] = str(self.tp_size)
                    torch.ops.sgl_kernel.initialize(self.tp_size, self.tp_rank)
539
540
                else:
                    logger.warning(
541
                        "init_cpu_threads_env and shared memory based AllReduce is disabled since intel amx backend is not available"
542
543
                    )

Mick's avatar
Mick committed
544
            # Only initialize the distributed environment on the target model worker.
545
546
            init_distributed_environment(
                backend=backend,
547
548
                world_size=self.tp_size * self.pp_size,
                rank=self.tp_size * self.pp_rank + self.tp_rank,
549
550
                local_rank=self.gpu_id,
                distributed_init_method=dist_init_method,
551
                timeout=self.server_args.dist_timeout,
552
            )
553
554
555
            initialize_model_parallel(
                tensor_model_parallel_size=self.tp_size,
                pipeline_model_parallel_size=self.pp_size,
Cheng Wan's avatar
Cheng Wan committed
556
                expert_model_parallel_size=self.moe_ep_size,
557
                duplicate_tp_group=self.server_args.enable_pdmux,
558
            )
559
560
561
562
563
            initialize_dp_attention(
                enable_dp_attention=self.server_args.enable_dp_attention,
                tp_rank=self.tp_rank,
                tp_size=self.tp_size,
                dp_size=self.server_args.dp_size,
564
                moe_dense_tp_size=self.server_args.moe_dense_tp_size,
565
                pp_size=self.server_args.pp_size,
566
            )
567

568
        min_per_gpu_memory = get_available_gpu_memory(
569
570
571
572
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
573
        )
574
        self.tp_group = get_tp_group()
575
        self.attention_tp_group = get_attention_tp_group()
576

577
        # Check memory for tensor parallelism
578
        local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
579
        if self.tp_size > 1 and not self.is_draft_worker:
580
            if min_per_gpu_memory < local_gpu_memory * 0.9:
581
582
583
584
585
586
587
588
589
590
                if get_bool_env_var("SGL_DISABLE_TP_MEMORY_INBALANCE_CHECK"):
                    logger.warning(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
                else:
                    raise ValueError(
                        "The memory capacity is unbalanced. Some GPUs may be occupied by other processes. "
                        f"{min_per_gpu_memory=}, {local_gpu_memory=}, {local_gpu_memory * 0.9=}"
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
591

592
593
594
        logger.info(
            f"Init torch distributed ends. mem usage={(before_avail_memory - local_gpu_memory):.2f} GB"
        )
595
        return min_per_gpu_memory
596

Lianmin Zheng's avatar
Lianmin Zheng committed
597
    def load_model(self):
598
        before_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
599
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
600
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
601
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
602
603

        # This can reduce thread conflicts and speed up weight loading.
604
605
        if self.device != "cpu":
            torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
606
607
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
608
609
610
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
Zhang, Liangang's avatar
Zhang, Liangang committed
611
                self.server_args.dtype = "float16"
612
                self.model_config.dtype = torch.float16
Zhang, Liangang's avatar
Zhang, Liangang committed
613
614
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
615

616
617
        set_cuda_arch()

618
        # Prepare the model config
619
620
621
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
622
            model_loader_extra_config=self.server_args.model_loader_extra_config,
623
        )
624
625
626
627
        if self.device == "cpu":
            self.model_config = adjust_config_with_unaligned_cpu_tp(
                self.model_config, self.load_config, self.tp_size
            )
628
629
        if self.server_args.load_format == "gguf":
            monkey_patch_vllm_gguf_config()
630
631

        # Load the model
632
633
        # Remove monkey_patch when linear.py quant remove dependencies with vllm
        monkey_patch_vllm_parallel_state()
634
635
        monkey_patch_isinstance_for_vllm_base_layer()

636
        with self.memory_saver_adapter.region(GPU_MEMORY_TYPE_WEIGHTS):
637
638
639
640
641
            self.model = get_model(
                model_config=self.model_config,
                load_config=self.load_config,
                device_config=DeviceConfig(self.device),
            )
642
        monkey_patch_vllm_parallel_state(reverse=True)
643
        monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
644

bjmsong's avatar
bjmsong committed
645
646
647
648
649
650
        if self.server_args.kv_cache_dtype == "fp8_e4m3":
            if self.server_args.quantization_param_path is not None:
                if callable(getattr(self.model, "load_kv_cache_scales", None)):
                    self.model.load_kv_cache_scales(
                        self.server_args.quantization_param_path
                    )
651
652
653
654
                    logger.info(
                        "Loaded KV cache scaling factors from %s",
                        self.server_args.quantization_param_path,
                    )
bjmsong's avatar
bjmsong committed
655
656
657
658
659
660
661
662
663
664
665
666
667
                else:
                    raise RuntimeError(
                        "Using FP8 KV cache and scaling factors provided but "
                        "model %s does not support loading scaling factors.",
                        self.model.__class__,
                    )
            else:
                logger.warning(
                    "Using FP8 KV cache but no scaling factors "
                    "provided. Defaulting to scaling factors of 1.0. "
                    "This may lead to less accurate results!"
                )

668
        # Parse other args
Hanming Lu's avatar
Hanming Lu committed
669
670
671
672
673
        self.sliding_window_size = None
        if hasattr(self.model, "get_attention_sliding_window_size"):
            self.sliding_window_size = self.model.get_attention_sliding_window_size()
        elif self.model_config.attention_chunk_size is not None:
            self.sliding_window_size = self.model_config.attention_chunk_size
674
            logger.info(
Hanming Lu's avatar
Hanming Lu committed
675
676
677
                f"Setting sliding_window_size to be attention_chunk_size: {self.sliding_window_size}"
            )

678
        self.dtype = self.model_config.dtype
679

680
        after_avail_memory = get_available_gpu_memory(self.device, self.gpu_id)
681
        self.weight_load_mem_usage = before_avail_memory - after_avail_memory
682
        logger.info(
683
            f"Load weight end. "
684
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
685
            f"dtype={self.dtype}, "
686
            f"avail mem={after_avail_memory:.2f} GB, "
687
            f"mem usage={self.weight_load_mem_usage:.2f} GB."
688
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
689

690
691
692
693
694
695
696
697
698
699
700
701
        # Handle the case where some ranks do not finish loading.
        try:
            dist.monitored_barrier(
                group=get_tp_group().cpu_group,
                timeout=datetime.timedelta(seconds=UNBALANCED_MODEL_LOADING_TIMEOUT_S),
                wait_all_ranks=True,
            )
        except RuntimeError:
            raise ValueError(
                f"TP rank {self.tp_rank} could finish the model loading, but there are other ranks that didn't finish loading. It is likely due to unexpected failures (e.g., OOM) or a slow node."
            ) from None

702
    def update_expert_location(
703
704
705
        self,
        new_expert_location_metadata: ExpertLocationMetadata,
        update_layer_ids: List[int],
706
    ):
707
        self.expert_location_updater.update(
708
709
            self.model.routed_experts_weights_of_layer,
            new_expert_location_metadata,
710
            update_layer_ids=update_layer_ids,
711
712
713
714
            nnodes=self.server_args.nnodes,
            rank=self.tp_rank,
        )

715
716
717
718
    def update_weights_from_disk(
        self, model_path: str, load_format: str
    ) -> tuple[bool, str]:
        """Update engine weights in-place from the disk."""
719
        logger.info(
Chayenne's avatar
Chayenne committed
720
            f"Update engine weights online from disk begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
721
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
722
723
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
724
        target_device = torch.device(self.device)
725
        self.model_config.model_path = model_path
726
727
        load_config = LoadConfig(load_format=load_format)

Lianmin Zheng's avatar
Lianmin Zheng committed
728
        # Only support DefaultModelLoader for now
729
730
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
731
732
            message = f"Failed to get model loader: {loader}."
            return False, message
733
734
735

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
736
                DefaultModelLoader.Source.init_new(config, self.model)
737
738
739
740
            )
            return iter

        def model_load_weights(model, iter):
741
            DefaultModelLoader.load_weights_and_postprocess(model, iter, target_device)
742
743
            return model

744
        with set_default_torch_dtype(self.model_config.dtype):
745
            try:
746
                iter = get_weight_iter(self.model_config)
747
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
748
                message = f"Failed to get weights iterator: {e}."
749
750
751
752
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
753
754
755
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
756
757
                del iter
                gc.collect()
758
                iter = get_weight_iter(self.model_config)
759
760
761
762
763
764
765
766
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.load_config = load_config

767
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
768
        return True, "Succeeded to update model weights."
769

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    def init_weights_update_group(
        self,
        master_address,
        master_port,
        rank_offset,
        world_size,
        group_name,
        backend="nccl",
    ):
        """Initialize the Torch process group for model parameter updates.

        `_model_update_group` is used in the RLHF workflow, where rank
        0 is the actor model in the training engine, and the other ranks are
        the inference engine, which is used for rollout.

        In the RLHF workflow, the training engine updates the model
        weights/parameters online, and broadcasts them to the inference
        engine through the `_model_update_group` process group.
        """
        assert (
            torch.distributed.is_initialized()
        ), "Default torch process group must be initialized"
        assert group_name != "", "Group name cannot be empty"

        rank = rank_offset + self.tp_rank

        logger.info(
            f"init custom process group: master_address={master_address}, master_port={master_port}, "
798
            f"rank_offset={rank_offset}, rank={rank}, world_size={world_size}, group_name={group_name}, backend={backend}"
799
800
801
        )

        try:
802
            self._model_update_group[group_name] = init_custom_process_group(
803
804
805
806
807
808
809
810
811
812
813
814
                backend=backend,
                init_method=f"tcp://{master_address}:{master_port}",
                world_size=world_size,
                rank=rank,
                group_name=group_name,
            )
            return True, "Succeeded to initialize custom process group."
        except Exception as e:
            message = f"Failed to initialize custom process group: {e}."
            logger.error(message)
            return False, message

815
    def update_weights_from_distributed(self, names, dtypes, shapes, group_name):
816
817
818
819
820
821
822
823
824
825
        """
        Update specific parameter in the model weights online
        through `_model_update_group` process group.

        Args:
            name: the name of the parameter to be updated.
            dtype: the data type of the parameter to be updated.
            shape: the shape of the parameter to be updated.
        """

826
827
828
829
        assert group_name in self._model_update_group, (
            f"Group {group_name} not in {list(self._model_update_group.keys())}. "
            "Please call `init_weights_update_group` first."
        )
830
831

        try:
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
            weights = []
            handles = []
            for name, dtype, shape in zip(names, dtypes, shapes):
                target_dtype = (
                    dtype if isinstance(dtype, torch.dtype) else getattr(torch, dtype)
                )
                weight = torch.empty(shape, dtype=target_dtype, device=self.device)
                handles.append(
                    torch.distributed.broadcast(
                        weight,
                        src=0,
                        group=self._model_update_group[group_name],
                        async_op=True,
                    )
                )
                weights.append((name, weight))
            for handle in handles:
                handle.wait()

            self.model.load_weights(weights)
            return True, f"Succeeded to update parameter online."
853
854
855
856
857
858
859
860
861
862

        except Exception as e:
            error_msg = (
                f"Failed to update parameter online: {e}. "
                f"The full weights of the ModelRunner are partially updated. "
                f"Please discard the whole weights."
            )
            logger.error(error_msg)
            return False, error_msg

863
864
865
866
867
868
869
870
871
872
873
    def update_weights_from_tensor(
        self,
        named_tensors: List[Tuple[str, Union[torch.Tensor, "LocalSerializedTensor"]]],
        load_format: Optional[str] = None,
    ):
        named_tensors = [
            (name, _unwrap_tensor(tensor, tp_rank=self.tp_rank))
            for name, tensor in named_tensors
        ]
        if load_format == "direct":
            _model_load_weights_direct(self.model, named_tensors)
874
875
876
        elif load_format in self.server_args.custom_weight_loader:
            custom_loader = dynamic_import(load_format)
            custom_loader(self.model, named_tensors)
877
878
879
880
        elif load_format is None:
            self.model.load_weights(named_tensors)
        else:
            raise NotImplementedError(f"Unknown load_format={load_format}")
881
        return True, "Success"
882

883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
    def get_weights_by_name(
        self, name: str, truncate_size: int = 100
    ) -> Optional[torch.Tensor]:
        """Get the weights of the parameter by its name. Similar to `get_parameter` in Hugging Face.

        Only used for unit test with an unoptimized performance.
        For optimized performance, please use torch.save and torch.load.
        """
        # TODO: (chenyang) Add support for Qwen models.
        try:
            return self.model.get_weights_by_name(
                name, truncate_size, tp_size=self.tp_size
            )
        except Exception as e:
            logger.error(f"Error when getting parameter {name}: {e}")
            return None

900
901
902
903
904
905
906
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
907
            lora_backend=self.server_args.lora_backend,
908
909
            tp_size=self.tp_size,
            tp_rank=self.tp_rank,
910
911
            max_lora_rank=self.server_args.max_lora_rank,
            target_modules=self.server_args.lora_target_modules,
912
            lora_paths=self.server_args.lora_paths,
913
        )
914

915
    def load_lora_adapter(self, lora_ref: LoRARef):
916
917
918
        """Load a new lora adapter from disk or huggingface."""

        logger.info(
919
            f"LoRA adapter loading starts: {lora_ref}. "
920
921
922
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

923
        result = self.lora_manager.load_lora_adapter(lora_ref)
924
925

        logger.info(
926
            f"LoRA adapter loading completes: {lora_ref}. "
927
928
929
930
931
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

        return result

932
    def unload_lora_adapter(self, lora_ref: LoRARef):
933
934
935
        """Unload a lora adapter that was previously loaded during initialization or dynamic loading."""

        logger.info(
936
            f"LoRA adapter unloading starts: {lora_ref}. "
937
938
939
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

940
        result = self.lora_manager.unload_lora_adapter(lora_ref)
941
942

        logger.info(
943
            f"LoRA adapter unloading completes: {lora_ref}. "
944
945
946
947
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
        )

        return result
948

949
    def profile_max_num_token(self, total_gpu_memory: int):
950
        available_gpu_memory = get_available_gpu_memory(
951
952
953
954
            self.device,
            self.gpu_id,
            distributed=get_world_group().world_size > 1,
            cpu_group=get_world_group().cpu_group,
955
        )
956
957
958
959
960
        if self.is_draft_worker:
            num_layers = getattr(
                self.model_config.hf_config,
                "num_nextn_predict_layers",
                self.num_effective_layers,
961
            )
962
963
964
        else:
            num_layers = self.num_effective_layers
        if self.use_mla_backend:
965
966
            # FIXME: pipeline parallelism is not compatible with mla backend
            assert self.pp_size == 1
967
968
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
969
                * num_layers
970
                * torch._utils._element_size(self.kv_cache_dtype)
971
972
973
            )
        else:
            cell_size = (
974
                self.model_config.get_num_kv_heads(get_attention_tp_size())
975
                * self.model_config.head_dim
976
                * num_layers
977
                * 2
978
                * torch._utils._element_size(self.kv_cache_dtype)
979
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
980
981
982
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
983
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
984
985
        return max_num_token

tarinkk's avatar
tarinkk committed
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    def set_num_token_hybrid(self):
        if (
            "Llama4ForConditionalGeneration"
            in self.model_config.hf_config.architectures
        ):
            temp_ratio = (
                (1 - self.is_hybrid)
                + self.is_hybrid
                * self.attention_chunk_size
                / self.model_config.context_len
            )
            self.swa_max_total_num_tokens = (
                4 * self.max_total_num_tokens * temp_ratio // (3 * temp_ratio + 1)
            )
            self.full_max_total_num_tokens = (
                4 * self.max_total_num_tokens
                - 12 * self.max_total_num_tokens * temp_ratio // (3 * temp_ratio + 1)
            )
            self.swa_max_total_num_tokens = int(
                self.swa_max_total_num_tokens
                // self.server_args.page_size
                * self.server_args.page_size
            )
            self.full_max_total_num_tokens = int(
                self.full_max_total_num_tokens
                // self.server_args.page_size
                * self.server_args.page_size
            )
            self.max_total_num_tokens = self.full_max_total_num_tokens
        else:
Hanming Lu's avatar
Hanming Lu committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
            assert self.sliding_window_size is not None and self.sliding_window_size > 0
            full_attention_layer_ids = []
            swa_attention_layer_ids = []

            try:
                layers = self.model.model.layers
            except:
                try:
                    layers = self.model.language_model.model.layers
                except:
1026
1027
1028
1029
1030
                    try:
                        layers = self.model.language_model.layers
                    except:
                        self.is_hybrid = False
                        return
Hanming Lu's avatar
Hanming Lu committed
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065

            for layer in layers:
                if (
                    layer.self_attn.attn.sliding_window_size is None
                    or layer.self_attn.attn.sliding_window_size == -1
                ):
                    full_attention_layer_ids.append(layer.layer_id)
                else:
                    swa_attention_layer_ids.append(layer.layer_id)
            self.model_config.swa_attention_layer_ids = swa_attention_layer_ids
            self.model_config.full_attention_layer_ids = full_attention_layer_ids

            # Algorithm:
            # Existing max_total_num_tokens is per layer and assume all layers have the same number of tokens.
            # - Find total # of tokens available across layers.
            # - Calculate full_max_total_num_tokens and swa_max_total_num_tokens based on the given swa_full_tokens_ratio.
            total_tokens = (
                self.max_total_num_tokens * self.model_config.num_hidden_layers
            )
            full_layers_num = len(full_attention_layer_ids)
            swa_layers_num = len(swa_attention_layer_ids)
            swa_full_tokens_ratio = self.server_args.swa_full_tokens_ratio

            # Solve the equations:
            # 1. swa_max_total_num_tokens * swa_layers_num + full_max_total_num_tokens * full_layers_num == total_tokens
            # 2. full_max_total_num_tokens * swa_full_tokens_ratio == swa_max_total_num_tokens
            denominator = swa_full_tokens_ratio * swa_layers_num + full_layers_num
            self.full_max_total_num_tokens = int(total_tokens / denominator)
            self.swa_max_total_num_tokens = int(
                self.full_max_total_num_tokens * swa_full_tokens_ratio
            )
            self.max_total_num_tokens = self.full_max_total_num_tokens

            logger.info(
                f"Use Sliding window memory pool. full_layer_tokens={self.full_max_total_num_tokens}, swa_layer_tokens={self.swa_max_total_num_tokens}"
tarinkk's avatar
tarinkk committed
1066
1067
            )

1068
    def init_memory_pool(
1069
1070
        self,
        total_gpu_memory: int,
1071
1072
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
1073
    ):
1074
1075
1076
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
1077
            if _is_hip:  # Using natively supported format
HAI's avatar
HAI committed
1078
1079
1080
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
bjmsong's avatar
bjmsong committed
1081
        elif self.server_args.kv_cache_dtype == "fp8_e4m3":
1082
1083
1084
            if _is_hip:  # Using natively supported format
                self.kv_cache_dtype = torch.float8_e4m3fnuz
            else:
bjmsong's avatar
bjmsong committed
1085
                self.kv_cache_dtype = torch.float8_e4m3fn
1086
1087
1088
1089
1090
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

1091
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103

        if max_num_reqs is None:
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
                4096,
            )

1104
1105
1106
        if SGLANG_CI_SMALL_KV_SIZE:
            self.max_total_num_tokens = int(SGLANG_CI_SMALL_KV_SIZE)

1107
1108
1109
        if not self.spec_algorithm.is_none():
            if self.is_draft_worker:
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
1110
                max_num_reqs = self.server_args.max_num_reqs
1111
            else:
1112
1113
                # We are sharing the `token_to_kv_pool`, and both verify and draft tokens
                # can be concurrently allocated, so we should give a headroom for it.
1114
1115
                self.server_args.draft_runner_cache_size = (
                    self.max_total_num_tokens
1116
1117
1118
1119
1120
1121
1122
                    # draft
                    + max_num_reqs
                    * self.server_args.speculative_num_steps
                    * self.server_args.speculative_eagle_topk
                    # verify
                    + max_num_reqs * self.server_args.speculative_num_draft_tokens
                    # buffer
1123
1124
                    + 100
                )
1125
1126
1127
1128
                # Target worker and draft worker shares the same indices for the
                # token_to_kv_pool, so we should make sure to match max_total_num_tokens.
                self.max_total_num_tokens = self.server_args.draft_runner_cache_size
                self.server_args.max_num_reqs = max_num_reqs
1129

1130
1131
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
1132
                logging.warning(
1133
1134
1135
1136
1137
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
1138

1139
1140
1141
1142
1143
        self.max_total_num_tokens = (
            self.max_total_num_tokens
            // self.server_args.page_size
            * self.server_args.page_size
        )
tarinkk's avatar
tarinkk committed
1144
1145
1146
1147
        # create token size for hybrid cache
        if self.is_hybrid:
            self.set_num_token_hybrid()

1148
        if self.max_total_num_tokens <= 0:
1149
            raise RuntimeError(
1150
                "Not enough memory. Please try to increase --mem-fraction-static."
1151
            )
1152

1153
        if self.req_to_token_pool is None:
Byron Hsu's avatar
Byron Hsu committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
            if self.server_args.disaggregation_mode == "decode":
                from sglang.srt.disaggregation.decode import DecodeReqToTokenPool

                # subscribe memory for pre-allocated requests
                # if max_num_reqs <= 32, we pre-allocate 2x requests
                pre_alloc_size = max_num_reqs * 2 if max_num_reqs <= 32 else 0
                self.req_to_token_pool = DecodeReqToTokenPool(
                    size=max_num_reqs,
                    max_context_len=self.model_config.context_len + 4,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    pre_alloc_size=pre_alloc_size,
                )
            else:
                self.req_to_token_pool = ReqToTokenPool(
                    size=max_num_reqs,
                    max_context_len=self.model_config.context_len + 4,
                    device=self.device,
                    enable_memory_saver=self.server_args.enable_memory_saver,
                )
1174
1175
1176
1177
        else:
            # Draft worker shares req_to_token_pool with the target worker.
            assert self.is_draft_worker

1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
        if self.server_args.attention_backend == "ascend" and not self.use_mla_backend:
            self.token_to_kv_pool = AscendTokenToKVPool(
                self.max_total_num_tokens,
                page_size=self.page_size,
                dtype=self.kv_cache_dtype,
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
                device=self.device,
                enable_memory_saver=self.server_args.enable_memory_saver,
            )
        elif self.server_args.attention_backend == "ascend" and self.use_mla_backend:
            self.token_to_kv_pool = AscendMLAPagedTokenToKVPool(
                self.max_total_num_tokens,
                page_size=self.page_size,
                dtype=self.kv_cache_dtype,
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
1196
                layer_num=self.num_effective_layers,
1197
1198
1199
1200
1201
1202
                device=self.device,
                enable_memory_saver=self.server_args.enable_memory_saver,
                start_layer=self.start_layer,
                end_layer=self.end_layer,
            )
        elif self.use_mla_backend:
1203
1204
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
1205
                page_size=self.page_size,
1206
                dtype=self.kv_cache_dtype,
1207
1208
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
1209
                layer_num=self.num_effective_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
1210
                device=self.device,
1211
                enable_memory_saver=self.server_args.enable_memory_saver,
1212
1213
                start_layer=self.start_layer,
                end_layer=self.end_layer,
1214
            )
Shuo Yang's avatar
Shuo Yang committed
1215
1216
1217
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
Lianmin Zheng's avatar
Lianmin Zheng committed
1218
                page_size=self.page_size,
Shuo Yang's avatar
Shuo Yang committed
1219
                dtype=self.kv_cache_dtype,
1220
                head_num=self.model_config.get_num_kv_heads(get_attention_tp_size()),
Shuo Yang's avatar
Shuo Yang committed
1221
                head_dim=self.model_config.head_dim,
1222
                layer_num=self.num_effective_layers,
Shuo Yang's avatar
Shuo Yang committed
1223
1224
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
1225
                enable_memory_saver=self.server_args.enable_memory_saver,
1226
1227
                start_layer=self.start_layer,
                end_layer=self.end_layer,
Shuo Yang's avatar
Shuo Yang committed
1228
            )
1229
        else:
tarinkk's avatar
tarinkk committed
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
            if self.is_hybrid:
                self.token_to_kv_pool = SWAKVPool(
                    size=self.full_max_total_num_tokens,
                    size_swa=self.swa_max_total_num_tokens,
                    dtype=self.kv_cache_dtype,
                    head_num=self.model_config.get_num_kv_heads(
                        get_attention_tp_size()
                    ),
                    head_dim=self.model_config.head_dim,
                    swa_attention_layer_ids=self.model_config.swa_attention_layer_ids,
                    full_attention_layer_ids=self.model_config.full_attention_layer_ids,
                    enable_kvcache_transpose=False,
                    device=self.device,
                )
            else:
                self.token_to_kv_pool = MHATokenToKVPool(
Lianmin Zheng's avatar
Lianmin Zheng committed
1246
                    self.max_total_num_tokens,
tarinkk's avatar
tarinkk committed
1247
                    page_size=self.page_size,
Lianmin Zheng's avatar
Lianmin Zheng committed
1248
                    dtype=self.kv_cache_dtype,
tarinkk's avatar
tarinkk committed
1249
1250
1251
1252
1253
                    head_num=self.model_config.get_num_kv_heads(
                        get_attention_tp_size()
                    ),
                    head_dim=self.model_config.head_dim,
                    layer_num=self.num_effective_layers,
Lianmin Zheng's avatar
Lianmin Zheng committed
1254
                    device=self.device,
tarinkk's avatar
tarinkk committed
1255
1256
1257
                    enable_memory_saver=self.server_args.enable_memory_saver,
                    start_layer=self.start_layer,
                    end_layer=self.end_layer,
Lianmin Zheng's avatar
Lianmin Zheng committed
1258
                )
tarinkk's avatar
tarinkk committed
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276

        if self.token_to_kv_pool_allocator is None:
            if self.page_size == 1:
                if self.is_hybrid:
                    self.token_to_kv_pool_allocator = SWATokenToKVPoolAllocator(
                        self.full_max_total_num_tokens,
                        self.swa_max_total_num_tokens,
                        dtype=self.kv_cache_dtype,
                        device=self.device,
                        kvcache=self.token_to_kv_pool,
                    )
                else:
                    self.token_to_kv_pool_allocator = TokenToKVPoolAllocator(
                        self.max_total_num_tokens,
                        dtype=self.kv_cache_dtype,
                        device=self.device,
                        kvcache=self.token_to_kv_pool,
                    )
Lianmin Zheng's avatar
Lianmin Zheng committed
1277
            else:
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
                if _is_npu:
                    self.token_to_kv_pool_allocator = AscendPagedTokenToKVPoolAllocator(
                        self.max_total_num_tokens,
                        page_size=self.page_size,
                        dtype=self.kv_cache_dtype,
                        device=self.device,
                        kvcache=self.token_to_kv_pool,
                    )
                else:
                    self.token_to_kv_pool_allocator = PagedTokenToKVPoolAllocator(
                        self.max_total_num_tokens,
                        page_size=self.page_size,
                        dtype=self.kv_cache_dtype,
                        device=self.device,
                        kvcache=self.token_to_kv_pool,
                    )
1294
1295
1296
        else:
            assert self.is_draft_worker

1297
        logger.info(
1298
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
1299
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
1300
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1301

Lianmin Zheng's avatar
Lianmin Zheng committed
1302
1303
1304
1305
1306
1307
1308
1309
1310
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

1311
1312
    def init_attention_backend(self):
        """Init attention kernel backend."""
1313
        if self.server_args.enable_two_batch_overlap and not self.is_draft_worker:
1314
1315
1316
1317
1318
            self.attn_backend = TboAttnBackend.init_new(self._get_attention_backend)
        else:
            self.attn_backend = self._get_attention_backend()

    def _get_attention_backend(self):
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
        """Init attention kernel backend."""
        self.decode_attention_backend_str = (
            self.server_args.decode_attention_backend
            if self.server_args.decode_attention_backend
            else self.server_args.attention_backend
        )
        self.prefill_attention_backend_str = (
            self.server_args.prefill_attention_backend
            if self.server_args.prefill_attention_backend
            else self.server_args.attention_backend
        )
        if self.decode_attention_backend_str != self.prefill_attention_backend_str:
            assert (
                self.server_args.speculative_algorithm is None
            ), "Currently HybridAttentionBackend does not support speculative decoding."
            from sglang.srt.layers.attention.hybrid_attn_backend import (
                HybridAttnBackend,
            )

            attn_backend = HybridAttnBackend(
                decode_backend=self._get_attention_backend_from_str(
                    self.decode_attention_backend_str
                ),
                prefill_backend=self._get_attention_backend_from_str(
                    self.prefill_attention_backend_str
                ),
            )
            logger.info(
                f"Using hybrid attention backend for decode and prefill: "
                f"decode_backend={self.decode_attention_backend_str}, "
                f"prefill_backend={self.prefill_attention_backend_str}."
            )
            logger.warning(
                f"Warning: Attention backend specified by --attention-backend or default backend might be overridden."
                f"The feature of hybrid attention backend is experimental and unstable. Please raise an issue if you encounter any problem."
            )
        else:
            attn_backend = self._get_attention_backend_from_str(
                self.server_args.attention_backend
            )

        global_server_args_dict.update(
            {
                "decode_attention_backend": self.decode_attention_backend_str,
                "prefill_attention_backend": self.prefill_attention_backend_str,
            }
        )
        return attn_backend

    def _get_attention_backend_from_str(self, backend_str: str):
        if backend_str == "flashinfer":
1370
1371
1372
1373
            if not self.use_mla_backend:
                from sglang.srt.layers.attention.flashinfer_backend import (
                    FlashInferAttnBackend,
                )
1374

1375
1376
                # Init streams
                if self.server_args.speculative_algorithm == "EAGLE":
1377
1378
1379
1380
1381
                    if (
                        not hasattr(self, "plan_stream_for_flashinfer")
                        or not self.plan_stream_for_flashinfer
                    ):
                        self.plan_stream_for_flashinfer = torch.cuda.Stream()
1382
                return FlashInferAttnBackend(self)
1383
1384
1385
1386
1387
            else:
                from sglang.srt.layers.attention.flashinfer_mla_backend import (
                    FlashInferMLAAttnBackend,
                )

1388
                return FlashInferMLAAttnBackend(self)
1389
        elif backend_str == "aiter":
1390
1391
            from sglang.srt.layers.attention.aiter_backend import AiterAttnBackend

1392
            return AiterAttnBackend(self)
1393
        elif backend_str == "ascend":
1394
1395
1396
            from sglang.srt.layers.attention.ascend_backend import AscendAttnBackend

            return AscendAttnBackend(self)
1397
        elif backend_str == "triton":
1398
1399
1400
1401
1402
            assert not self.model_config.is_encoder_decoder, (
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
            if self.server_args.enable_double_sparsity:
1403
1404
1405
1406
                from sglang.srt.layers.attention.double_sparsity_backend import (
                    DoubleSparseAttnBackend,
                )

1407
                return DoubleSparseAttnBackend(self)
1408
            else:
1409
1410
                from sglang.srt.layers.attention.triton_backend import TritonAttnBackend

1411
                return TritonAttnBackend(self)
1412
        elif backend_str == "torch_native":
1413
1414
1415
1416
            from sglang.srt.layers.attention.torch_native_backend import (
                TorchNativeAttnBackend,
            )

1417
            return TorchNativeAttnBackend(self)
1418
        elif backend_str == "flashmla":
lukec's avatar
lukec committed
1419
1420
            from sglang.srt.layers.attention.flashmla_backend import FlashMLABackend

1421
            return FlashMLABackend(self)
1422
        elif backend_str == "fa3":
1423
1424
1425
1426
            assert (
                torch.cuda.get_device_capability()[0] == 8 and not self.use_mla_backend
            ) or torch.cuda.get_device_capability()[0] == 9, (
                "FlashAttention v3 Backend requires SM>=80 and SM<=90. "
1427
1428
1429
1430
1431
1432
                "Please use `--attention-backend flashinfer`."
            )
            from sglang.srt.layers.attention.flashattention_backend import (
                FlashAttentionBackend,
            )

1433
            return FlashAttentionBackend(self)
1434
        elif backend_str == "cutlass_mla":
1435
1436
1437
1438
            from sglang.srt.layers.attention.cutlass_mla_backend import (
                CutlassMLABackend,
            )

1439
            return CutlassMLABackend(self)
1440
1441
1442
1443
1444
1445
1446
        elif self.server_args.attention_backend == "intel_amx":
            from sglang.srt.layers.attention.intel_amx_backend import (
                IntelAMXAttnBackend,
            )

            logger.info(f"Intel AMX attention backend is enabled.")
            return IntelAMXAttnBackend(self)
1447
        else:
1448
            raise ValueError(f"Invalid attention backend: {backend_str}")
1449

Shuo Yang's avatar
Shuo Yang committed
1450
1451
1452
1453
1454
1455
1456
    def init_double_sparsity_channel_config(self, selected_channel):
        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

1457
        for i in range(self.start_layer, self.end_layer):
Shuo Yang's avatar
Shuo Yang committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

1467
    def init_cuda_graphs(self):
1468
        """Capture cuda graphs."""
1469
        self.cuda_graph_runner = None
1470
        self.cuda_graph_mem_usage = 0
1471

1472
        if not self.is_generation:
1473
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
1474
1475
            return

1476
1477
        if self.server_args.disable_cuda_graph:
            return
1478

1479
        tic = time.perf_counter()
1480
        before_mem = get_available_gpu_memory(self.device, self.gpu_id)
1481
        logger.info(
1482
            f"Capture cuda graph begin. This can take up to several minutes. avail mem={before_mem:.2f} GB"
1483
        )
1484
        self.cuda_graph_runner = CudaGraphRunner(self)
1485
        after_mem = get_available_gpu_memory(self.device, self.gpu_id)
1486
        self.cuda_graph_mem_usage = before_mem - after_mem
1487
        logger.info(
1488
            f"Capture cuda graph end. Time elapsed: {time.perf_counter() - tic:.2f} s. "
1489
            f"mem usage={self.cuda_graph_mem_usage:.2f} GB. avail mem={after_mem:.2f} GB."
1490
        )
1491

1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    def init_threads_binding(self):
        omp_cpuids = os.environ.get("SGLANG_CPU_OMP_THREADS_BIND", "all")
        if omp_cpuids == "all":
            cpu_ids_by_node = get_cpu_ids_by_node()
            n_numa_node = len(cpu_ids_by_node)

            assert self.tp_size <= n_numa_node, (
                f"SGLANG_CPU_OMP_THREADS_BIND is not set, in this case, "
                f"tp_size {self.tp_size} should be smaller than or equal to number of numa node on the machine {n_numa_node}. "
                f"If you need tp_size to be larger than number of numa node, please set the CPU cores for each tp rank via SGLANG_CPU_OMP_THREADS_BIND explicitly. "
                f"For example, on a machine with 2 numa nodes, where core 0-31 are on numa node 0 and core 32-63 are on numa node 1, "
                f"it is suggested to use -tp 2 and bind tp rank 0 to core 0-31 and tp rank 1 to core 32-63. "
                f"This is the default behavior if SGLANG_CPU_OMP_THREADS_BIND is not set and it is the same as setting SGLANG_CPU_OMP_THREADS_BIND=0-31|32-63. "
                f"If you do need tp_size to be larger than the number of numa nodes, you could set SGLANG_CPU_OMP_THREADS_BIND explicitly for example SGLANG_CPU_OMP_THREADS_BIND=0-15|16-31|32-47|48-63 and run with -tp 4. "
                f"If you don't want each tp rank to use all the cores on one numa node, you could set for example SGLANG_CPU_OMP_THREADS_BIND=0-15|32-47 and run with -tp 2."
            )
            if self.tp_size < n_numa_node:
                logger.warning(
                    f"Detected the current machine has {n_numa_node} numa nodes available, but tp_size is set to {self.tp_size}, so only {self.tp_size} numa nodes are used."
                )
            self.local_omp_cpuid = cpu_ids_by_node[self.tp_rank]
        else:
            self.local_omp_cpuid = omp_cpuids.split("|")[self.tp_rank]

1516
    def apply_torch_tp(self):
1517
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
1518
1519
1520
1521
1522
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

1523
    def forward_decode(
Cheng Wan's avatar
Cheng Wan committed
1524
1525
1526
1527
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors=None,
1528
    ) -> LogitsProcessorOutput:
Cheng Wan's avatar
Cheng Wan committed
1529
1530
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)
1531
1532
1533
1534
        # FIXME: add pp_proxy_tensors arg to all models
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
1535
        return self.model.forward(
1536
1537
1538
1539
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
Lianmin Zheng's avatar
Lianmin Zheng committed
1540
1541
        )

1542
    def forward_extend(
1543
1544
1545
1546
1547
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors=None,
    ) -> LogitsProcessorOutput:
1548
1549
1550
        if not skip_attn_backend_init:
            self.attn_backend.init_forward_metadata(forward_batch)

1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
        if forward_batch.input_embeds is not None:
            kwargs["input_embeds"] = forward_batch.input_embeds.bfloat16()
        if not self.is_generation:
            kwargs["get_embedding"] = True
        return self.model.forward(
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1564

1565
1566
1567
1568
1569
1570
    def forward_idle(
        self, forward_batch: ForwardBatch, pp_proxy_tensors=None
    ) -> LogitsProcessorOutput:
        kwargs = {}
        if self.support_pp:
            kwargs["pp_proxy_tensors"] = pp_proxy_tensors
Ke Bao's avatar
Ke Bao committed
1571
        return self.model.forward(
1572
1573
1574
1575
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            **kwargs,
Ke Bao's avatar
Ke Bao committed
1576
1577
        )

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
    def forward_split_prefill(
        self,
        forward_batch: ForwardBatch,
        reinit_attn_backend: bool = False,
        forward_count: int = 1,
    ) -> LogitsProcessorOutput:
        if forward_batch.split_index == 0 or reinit_attn_backend:
            self.attn_backend.init_forward_metadata(forward_batch)
        next_split_index = min(
            forward_batch.split_index + forward_count,
            self.model_config.num_hidden_layers,
        )
        ret = self.model.forward_split_prefill(
            forward_batch.input_ids,
            forward_batch.positions,
            forward_batch,
            (forward_batch.split_index, next_split_index),
        )
        forward_batch.split_index = next_split_index
        return ret

1599
    def forward(
1600
1601
1602
1603
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool = False,
        pp_proxy_tensors: Optional[PPProxyTensors] = None,
1604
1605
        reinit_attn_backend: bool = False,
        split_forward_count: int = 1,
1606
1607
1608
1609
1610
1611
1612
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
        self.forward_pass_id += 1

        with get_global_expert_distribution_recorder().with_forward_pass(
            self.forward_pass_id,
            forward_batch,
        ):
1613
            output = self._forward_raw(
1614
1615
1616
1617
1618
                forward_batch,
                skip_attn_backend_init,
                pp_proxy_tensors,
                reinit_attn_backend,
                split_forward_count,
1619
1620
            )

1621
        if self.eplb_manager is not None:
1622
            self.eplb_manager.on_forward_pass_end()
1623
1624
1625

        return output

1626
1627
1628
1629
1630
    def _forward_raw(
        self,
        forward_batch: ForwardBatch,
        skip_attn_backend_init: bool,
        pp_proxy_tensors: Optional[PPProxyTensors],
1631
1632
        reinit_attn_backend: bool = False,
        split_forward_count: int = 1,
1633
    ) -> Tuple[Union[LogitsProcessorOutput, PPProxyTensors], bool]:
1634
        can_run_cuda_graph = bool(
1635
1636
1637
            forward_batch.forward_mode.is_cuda_graph()
            and self.cuda_graph_runner
            and self.cuda_graph_runner.can_run(forward_batch)
1638
1639
        )
        if can_run_cuda_graph:
1640
            ret = self.cuda_graph_runner.replay(
1641
1642
1643
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1644
            )
Cheng Wan's avatar
Cheng Wan committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
            return ret, can_run_cuda_graph

        # For MLP sync
        if forward_batch.global_num_tokens_cpu is not None:
            forward_batch.prepare_mlp_sync_batch(self)

        if forward_batch.forward_mode.is_decode():
            ret = self.forward_decode(
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
            )
1657
        elif forward_batch.forward_mode.is_extend():
1658
            ret = self.forward_extend(
1659
1660
1661
                forward_batch,
                skip_attn_backend_init=skip_attn_backend_init,
                pp_proxy_tensors=pp_proxy_tensors,
1662
            )
1663
1664
1665
1666
1667
1668
        elif forward_batch.forward_mode.is_split_prefill():
            ret = self.forward_split_prefill(
                forward_batch,
                reinit_attn_backend=reinit_attn_backend,
                forward_count=split_forward_count,
            )
Ke Bao's avatar
Ke Bao committed
1669
        elif forward_batch.forward_mode.is_idle():
1670
            ret = self.forward_idle(forward_batch, pp_proxy_tensors=pp_proxy_tensors)
Lianmin Zheng's avatar
Lianmin Zheng committed
1671
        else:
1672
            raise ValueError(f"Invalid forward mode: {forward_batch.forward_mode}")
1673

Cheng Wan's avatar
Cheng Wan committed
1674
1675
1676
        if forward_batch.global_num_tokens_cpu is not None:
            forward_batch.post_forward_mlp_sync_batch(ret)

1677
1678
        return ret, can_run_cuda_graph

1679
1680
1681
    def _preprocess_logits(
        self, logits_output: LogitsProcessorOutput, sampling_info: SamplingBatchInfo
    ):
1682
        # Apply logit bias
1683
1684
1685
1686
1687
1688
1689
1690
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
1691
1692
        sampling_info.apply_logits_bias(logits_output.next_token_logits)

1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
    def sample(
        self,
        logits_output: LogitsProcessorOutput,
        forward_batch: ForwardBatch,
    ) -> torch.Tensor:
        """Sample and compute logprobs and update logits_output.

        Args:
            logits_output: The logits output from the model forward
            forward_batch: The forward batch that generates logits_output

        Returns:
            A list of next_token_ids
        """
        # For duplex models with multiple output streams.
        if isinstance(logits_output, tuple):
            return torch.stack(
                [self.sample(values, forward_batch) for values in logits_output],
                axis=-1,
            )
1713

1714
1715
        self._preprocess_logits(logits_output, forward_batch.sampling_info)

1716
1717
1718
        # Sample the next tokens
        next_token_ids = self.sampler(
            logits_output,
1719
            forward_batch.sampling_info,
1720
1721
            forward_batch.return_logprob,
            forward_batch.top_logprobs_nums,
1722
            forward_batch.token_ids_logprobs,
1723
        )
1724
1725
        return next_token_ids

Yineng Zhang's avatar
Yineng Zhang committed
1726
1727
1728
1729
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
1730
        rope_scaling = getattr(self.model_config.hf_text_config, "rope_scaling", {})
Yineng Zhang's avatar
Yineng Zhang committed
1731
1732
        if rope_scaling is None:
            return False
1733
1734
        is_mrope_enabled = "mrope_section" in rope_scaling
        return is_mrope_enabled
1735

1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
    def save_remote_model(self, url: str):
        from sglang.srt.model_loader.loader import RemoteModelLoader

        logger.info(f"Saving model to {url}")
        RemoteModelLoader.save_model(self.model, self.model_config.model_path, url)

    def save_sharded_model(
        self, path: str, pattern: Optional[str] = None, max_size: Optional[int] = None
    ):
        from sglang.srt.model_loader.loader import ShardedStateLoader

        logger.info(
            f"Save sharded model to {path} with pattern {pattern} and max_size {max_size}"
        )
        ShardedStateLoader.save_model(self.model, path, pattern, max_size)

1752
1753
1754
1755
1756
1757
1758
1759
1760

def _model_load_weights_direct(model, named_tensors: List[Tuple[str, torch.Tensor]]):
    params_dict = dict(model.named_parameters())
    for name, tensor in named_tensors:
        default_weight_loader(params_dict[name], tensor)


def _unwrap_tensor(tensor, tp_rank):
    if isinstance(tensor, LocalSerializedTensor):
1761
1762
1763
        monkey_patch_torch_reductions()
        tensor = tensor.get(tp_rank)
    return tensor.to(torch.cuda.current_device())
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774


@dataclass
class LocalSerializedTensor:
    """torch.Tensor that gets serialized by MultiprocessingSerializer (which only serializes a pointer and not the data).
    The i-th element in the list corresponds to i-th rank's GPU."""

    values: List[bytes]

    def get(self, rank: int):
        return MultiprocessingSerializer.deserialize(self.values[rank])