Unverified Commit 55d336cb authored by fzyzcjy's avatar fzyzcjy Committed by GitHub
Browse files

Refactor weight offloading logic (#8521)

parent de4990a5
......@@ -96,6 +96,11 @@ from sglang.srt.model_loader import get_model
from sglang.srt.model_loader.loader import DefaultModelLoader, get_model_loader
from sglang.srt.model_loader.utils import set_default_torch_dtype
from sglang.srt.model_loader.weight_utils import default_weight_loader
from sglang.srt.offloader import (
create_offloader_from_server_args,
get_offloader,
set_offloader,
)
from sglang.srt.patch_torch import monkey_patch_torch_reductions
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
from sglang.srt.server_args import ServerArgs
......@@ -118,7 +123,6 @@ from sglang.srt.utils import (
is_npu,
monkey_patch_p2p_access_check,
monkey_patch_vllm_gguf_config,
set_cpu_offload_max_bytes,
set_cuda_arch,
)
from sglang.srt.weight_sync.tensor_bucket import (
......@@ -222,9 +226,6 @@ class ModelRunner:
}
)
# CPU offload
set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))
# Init OpenMP threads binding for CPU
if self.device == "cpu":
self.init_threads_binding()
......@@ -232,6 +233,9 @@ class ModelRunner:
# Get memory before model loading
min_per_gpu_memory = self.init_torch_distributed()
# CPU offload
set_offloader(create_offloader_from_server_args(server_args))
# Update deep gemm configure
if deep_gemm_wrapper.ENABLE_JIT_DEEPGEMM:
deep_gemm_wrapper.update_deep_gemm_config(gpu_id, server_args)
......@@ -690,6 +694,8 @@ class ModelRunner:
monkey_patch_vllm_parallel_state(reverse=True)
monkey_patch_isinstance_for_vllm_base_layer(reverse=True)
get_offloader().post_init()
if self.server_args.kv_cache_dtype == "fp8_e4m3":
if self.server_args.quantization_param_path is not None:
if callable(getattr(self.model, "load_kv_cache_scales", None)):
......
import logging
from abc import ABC
from typing import Callable, Generator, List, Optional
import torch
from torch.func import functional_call
from sglang.srt.server_args import ServerArgs
from sglang.srt.utils import is_pin_memory_available
logger = logging.getLogger(__name__)
_SubmoduleAccessor = Callable[[torch.nn.Module], torch.nn.Module]
_WhitelistParamNamesCreator = Callable[[torch.nn.Module], List[str]]
class BaseOffloader(ABC):
def wrap_modules(
self,
all_modules_generator: Generator[torch.nn.Module, None, None],
submodule_accessor: Optional[_SubmoduleAccessor] = None,
whitelist_param_names_creator: Optional[_WhitelistParamNamesCreator] = None,
):
return list(all_modules_generator)
def post_init(self):
pass
class NoopOffloader(BaseOffloader):
pass
# For simplicity use singleton, but can surely support multi instance
_instance: Optional[BaseOffloader] = NoopOffloader()
def get_offloader():
assert _instance is not None
return _instance
def set_offloader(instance: BaseOffloader):
global _instance
_instance = instance
def create_offloader_from_server_args(server_args: ServerArgs):
if server_args.cpu_offload_gb > 0:
return OffloaderV1(
cpu_offload_max_bytes=int(server_args.cpu_offload_gb * 1024**3)
)
return NoopOffloader()
class OffloaderV1(BaseOffloader):
def __init__(self, cpu_offload_max_bytes: int):
self._cpu_offload_bytes = 0
self._cpu_offload_max_bytes = cpu_offload_max_bytes
def wrap_modules(
self,
all_modules_generator: Generator[torch.nn.Module, None, None],
submodule_accessor: Optional[_SubmoduleAccessor] = None,
whitelist_param_names_creator: Optional[_WhitelistParamNamesCreator] = None,
):
return [self.maybe_offload_to_cpu(module) for module in all_modules_generator]
def maybe_offload_to_cpu(self, module: torch.nn.Module) -> torch.nn.Module:
if (params := next(module.parameters(), None)) is None:
return module
device = params.device
if device == torch.device("cpu"):
return module
if self._cpu_offload_bytes >= self._cpu_offload_max_bytes:
return module
pin_memory = is_pin_memory_available()
# offload parameters to CPU
# use pin_memory if possible, which helps cudagraph capture speed
offloaded_parameters = False
for p in module.parameters():
if self._cpu_offload_bytes >= self._cpu_offload_max_bytes:
# we use per-parameter offloading
# one module might have some parameters offloaded and some not
break
# `torch.empty_like` does not support `pin_memory` argument
cpu_data = torch.empty_strided(
size=p.data.size(),
stride=p.data.stride(),
dtype=p.data.dtype,
layout=p.data.layout,
device="cpu",
pin_memory=pin_memory,
)
cpu_data.copy_(p.data)
p.data = cpu_data
self._cpu_offload_bytes += p.data.numel() * p.data.element_size()
offloaded_parameters = True
if offloaded_parameters:
original_forward = module.forward
def forward(*args, **kwargs):
module.forward = original_forward
device_state = {
# here we blindly call `to(device)`
# if the parameter is already on the device, it will be a no-op
k: v.to(device, non_blocking=True)
for k, v in module.state_dict().items()
}
output = functional_call(module, device_state, args=args, kwargs=kwargs)
module.forward = forward
return output
module.forward = forward
return module
......@@ -438,72 +438,6 @@ def is_pin_memory_available() -> bool:
return torch.cuda.is_available()
_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0
def set_cpu_offload_max_bytes(max_bytes: int) -> None:
global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = max_bytes
def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
if (params := next(module.parameters(), None)) is None:
return module
device = params.device
if device == torch.device("cpu"):
return module
global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
return module
pin_memory = is_pin_memory_available()
# offload parameters to CPU
# use pin_memory if possible, which helps cudagraph capture speed
offloaded_parameters = False
for p in module.parameters():
if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
# we use per-parameter offloading
# one module might have some parameters offloaded and some not
break
# `torch.empty_like` does not support `pin_memory` argument
cpu_data = torch.empty_strided(
size=p.data.size(),
stride=p.data.stride(),
dtype=p.data.dtype,
layout=p.data.layout,
device="cpu",
pin_memory=pin_memory,
)
cpu_data.copy_(p.data)
p.data = cpu_data
_CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
offloaded_parameters = True
if offloaded_parameters:
original_forward = module.forward
def forward(*args, **kwargs):
module.forward = original_forward
device_state = {
# here we blindly call `to(device)`
# if the parameter is already on the device, it will be a no-op
k: v.to(device, non_blocking=True)
for k, v in module.state_dict().items()
}
output = functional_call(module, device_state, args=args, kwargs=kwargs)
module.forward = forward
return output
module.forward = forward
return module
class LayerFn(Protocol):
def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...
......@@ -516,11 +450,13 @@ def make_layers(
pp_size: Optional[int] = None,
prefix: str = "",
return_tuple: bool = False,
offloader_kwargs: Dict[str, Any] = {},
) -> Tuple[int, int, torch.nn.ModuleList]:
"""Make a list of layers with the given layer function"""
# circula imports
from sglang.srt.distributed import get_pp_indices
from sglang.srt.layers.utils import PPMissingLayer
from sglang.srt.offloader import get_offloader
assert not pp_size or num_hidden_layers >= pp_size
start_layer, end_layer = (
......@@ -534,10 +470,13 @@ def make_layers(
)
modules = torch.nn.ModuleList(
[PPMissingLayer(return_tuple=return_tuple) for _ in range(start_layer)]
+ [
maybe_offload_to_cpu(layer_fn(idx=idx, prefix=add_prefix(idx, prefix)))
for idx in range(start_layer, end_layer)
]
+ get_offloader().wrap_modules(
(
layer_fn(idx=idx, prefix=add_prefix(idx, prefix))
for idx in range(start_layer, end_layer)
),
**offloader_kwargs,
)
+ [
PPMissingLayer(return_tuple=return_tuple)
for _ in range(end_layer, num_hidden_layers)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment