model_runner.py 29.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
"""ModelRunner runs the forward passes of the models."""
15

16
import gc
Cody Yu's avatar
Cody Yu committed
17
import importlib
18
import importlib.resources
19
import inspect
Shuo Yang's avatar
Shuo Yang committed
20
import json
21
22
import logging
import pkgutil
Cody Yu's avatar
Cody Yu committed
23
from functools import lru_cache
24
from typing import Optional, Type
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26

import torch
27
28
29
import torch.nn as nn
from vllm.config import DeviceConfig, LoadConfig
from vllm.config import ModelConfig as VllmModelConfig
zhyncs's avatar
zhyncs committed
30
31
32
33
from vllm.distributed import (
    get_tp_group,
    init_distributed_environment,
    initialize_model_parallel,
34
    set_custom_all_reduce,
zhyncs's avatar
zhyncs committed
35
)
36
from vllm.distributed.parallel_state import in_the_same_node_as
37
from vllm.model_executor.model_loader import get_model
38
from vllm.model_executor.models import ModelRegistry
Lianmin Zheng's avatar
Lianmin Zheng committed
39

40
from sglang.srt.configs.model_config import AttentionArch, ModelConfig
Shuo Yang's avatar
Shuo Yang committed
41
from sglang.srt.layers.attention.double_sparsity_backend import DoubleSparseAttnBackend
42
43
from sglang.srt.layers.attention.flashinfer_backend import FlashInferAttnBackend
from sglang.srt.layers.attention.triton_backend import TritonAttnBackend
Liangsheng Yin's avatar
Liangsheng Yin committed
44
from sglang.srt.layers.logits_processor import LogitsProcessorOutput
45
from sglang.srt.layers.sampler import Sampler
46
from sglang.srt.lora.lora_manager import LoRAManager
47
from sglang.srt.managers.schedule_batch import global_server_args_dict
48
from sglang.srt.mem_cache.memory_pool import (
Shuo Yang's avatar
Shuo Yang committed
49
    DoubleSparseTokenToKVPool,
50
51
52
53
    MHATokenToKVPool,
    MLATokenToKVPool,
    ReqToTokenPool,
)
54
from sglang.srt.model_executor.forward_batch_info import ForwardBatch
55
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
Lianmin Zheng's avatar
Lianmin Zheng committed
56
from sglang.srt.server_args import ServerArgs
57
from sglang.srt.utils import (
58
    crash_on_warnings,
59
    enable_show_time_cost,
60
    get_available_gpu_memory,
HAI's avatar
HAI committed
61
    is_hip,
62
    monkey_patch_vllm_model_config,
63
    monkey_patch_vllm_p2p_access_check,
64
    set_cpu_offload_max_bytes,
65
)
66

Ying Sheng's avatar
Ying Sheng committed
67
logger = logging.getLogger(__name__)
Lianmin Zheng's avatar
Lianmin Zheng committed
68

Lianmin Zheng's avatar
Lianmin Zheng committed
69
70

class ModelRunner:
71
72
    """ModelRunner runs the forward passes of the models."""

Lianmin Zheng's avatar
Lianmin Zheng committed
73
74
    def __init__(
        self,
75
        model_config: ModelConfig,
76
77
78
79
80
        mem_fraction_static: float,
        gpu_id: int,
        tp_rank: int,
        tp_size: int,
        nccl_port: int,
Lianmin Zheng's avatar
Lianmin Zheng committed
81
        server_args: ServerArgs,
Lianmin Zheng's avatar
Lianmin Zheng committed
82
    ):
83
        # Parse args
Lianmin Zheng's avatar
Lianmin Zheng committed
84
85
        self.model_config = model_config
        self.mem_fraction_static = mem_fraction_static
Zhang, Liangang's avatar
Zhang, Liangang committed
86
        self.device = server_args.device
87
        self.gpu_id = gpu_id
Lianmin Zheng's avatar
Lianmin Zheng committed
88
89
        self.tp_rank = tp_rank
        self.tp_size = tp_size
Zhang, Liangang's avatar
Zhang, Liangang committed
90
        self.dist_port = nccl_port
Lianmin Zheng's avatar
Lianmin Zheng committed
91
        self.server_args = server_args
92
93
        self.is_generation = model_config.is_generation
        self.is_multimodal = model_config.is_multimodal
Ke Bao's avatar
Ke Bao committed
94

95
        # Model-specific adjustment
Ke Bao's avatar
Ke Bao committed
96
97
98
99
        if (
            self.model_config.attention_arch == AttentionArch.MLA
            and not self.server_args.disable_mla
        ):
Amos You's avatar
Amos You committed
100
            logger.info("MLA optimization is turned on. Use triton backend.")
Ke Bao's avatar
Ke Bao committed
101
102
            self.server_args.attention_backend = "triton"

Shuo Yang's avatar
Shuo Yang committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
        if self.server_args.enable_double_sparsity:
            logger.info(
                "Double sparsity optimization is turned on. Use triton backend without CUDA graph."
            )
            self.server_args.attention_backend = "triton"
            self.server_args.disable_cuda_graph = True
            if self.server_args.ds_heavy_channel_type is None:
                raise ValueError(
                    "Please specify the heavy channel type for double sparsity optimization."
                )
            self.init_double_sparsity_channel_config(
                self.server_args.ds_heavy_channel_type
            )

117
        if self.is_multimodal:
118
            logger.info(
119
120
                "Automatically turn off --chunked-prefill-size and adjust --mem-fraction-static for multimodal models."
            )
121
            server_args.chunked_prefill_size = -1
Lianmin Zheng's avatar
Lianmin Zheng committed
122
            self.mem_fraction_static *= 0.95
123
            # TODO: qwen2-vl does not support radix cache now, set disable_radix_cache=True automatically
Yineng Zhang's avatar
Yineng Zhang committed
124
125
126
            if self.model_config.hf_config.architectures == [
                "Qwen2VLForConditionalGeneration"
            ]:
127
                server_args.disable_radix_cache = True
128

129
130
131
132
        # Global vars
        if server_args.show_time_cost:
            enable_show_time_cost()
        if server_args.disable_disk_cache:
133
134
            from outlines.caching import disable_cache

135
136
            disable_cache()

137
138
        global_server_args_dict.update(
            {
139
140
                "attention_backend": server_args.attention_backend,
                "sampling_backend": server_args.sampling_backend,
141
                "triton_attention_reduce_in_fp32": server_args.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
142
                "disable_mla": server_args.disable_mla,
143
                "torchao_config": server_args.torchao_config,
144
                "enable_nan_detection": server_args.enable_nan_detection,
Ke Bao's avatar
Ke Bao committed
145
                "enable_dp_attention": server_args.enable_dp_attention,
146
147
            }
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
148

149
150
        set_cpu_offload_max_bytes(int(server_args.cpu_offload_gb * 1024**3))

151
        # Get memory before model loading
152
        min_per_gpu_memory = self.init_torch_distributed()
153
154

        # Load the model
155
        self.sampler = Sampler()
156
        self.load_model()
157

158
        # Apply torch TP if the model supports it
159
160
161
162
163
164
165
        supports_torch_tp = getattr(self.model, "supports_torch_tp", False)
        if self.tp_size > 1 and supports_torch_tp:
            self.apply_torch_tp()
            self.torch_tp_applied = True
        else:
            self.torch_tp_applied = False

166
        # Init memory pool and attention backends
167
168
        if server_args.lora_paths is not None:
            self.init_lora_manager()
169
170
        self.init_memory_pool(
            min_per_gpu_memory,
171
            server_args.max_running_requests,
172
173
            server_args.max_total_tokens,
        )
Zhang, Liangang's avatar
Zhang, Liangang committed
174
175
176
177
178
        if self.device == "cuda":
            self.init_cublas()
            self.init_attention_backend()
            self.init_cuda_graphs()
        else:
179
            self.cuda_graph_runner = None
Zhang, Liangang's avatar
Zhang, Liangang committed
180
            self.init_attention_backend()
181
182

    def init_torch_distributed(self):
183
        logger.info("Init torch distributed begin.")
Lianmin Zheng's avatar
Lianmin Zheng committed
184
        # Init torch distributed
185
        torch.get_device_module(self.device).set_device(self.gpu_id)
Zhang, Liangang's avatar
Zhang, Liangang committed
186
187
        if self.device == "cuda":
            backend = "nccl"
188
        # ToDO(liangan1):Just use gloo to bypass the initilization fail
189
190
191
        # Need to use xccl for xpu backend in the future
        elif self.device == "xpu":
            backend = "gloo"
192
193
        elif self.device == "hpu":
            backend = "hccl"
194

195
        if not self.server_args.enable_p2p_check:
196
            monkey_patch_vllm_p2p_access_check(self.gpu_id)
197
        if self.server_args.dist_init_addr:
Zhang, Liangang's avatar
Zhang, Liangang committed
198
            dist_init_method = f"tcp://{self.server_args.dist_init_addr}"
199
        else:
Zhang, Liangang's avatar
Zhang, Liangang committed
200
            dist_init_method = f"tcp://127.0.0.1:{self.dist_port}"
201
        set_custom_all_reduce(not self.server_args.disable_custom_all_reduce)
Lianmin Zheng's avatar
Lianmin Zheng committed
202
        init_distributed_environment(
Zhang, Liangang's avatar
Zhang, Liangang committed
203
            backend=backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
204
205
            world_size=self.tp_size,
            rank=self.tp_rank,
206
            local_rank=self.gpu_id,
Zhang, Liangang's avatar
Zhang, Liangang committed
207
            distributed_init_method=dist_init_method,
Lianmin Zheng's avatar
Lianmin Zheng committed
208
209
        )
        initialize_model_parallel(tensor_model_parallel_size=self.tp_size)
210
        min_per_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
211
            self.device, self.gpu_id, distributed=self.tp_size > 1
212
        )
213
        self.tp_group = get_tp_group()
214

215
216
        # Currently, there is a bug with mulit-node tensor parallelsim + padded cuda graph,
        # so we disable padding in cuda graph.
Zhang, Liangang's avatar
Zhang, Liangang committed
217
218
219
        if self.device == "cuda" and not all(
            in_the_same_node_as(self.tp_group.cpu_group, source_rank=0)
        ):
220
221
222
223
224
225
            self.server_args.disable_cuda_graph_padding = True
            logger.info(
                "Setting disable_cuda_graph_padding to True because of multi-node tensor parallelism."
            )

        # Check memory for tensor parallelism
226
        if self.tp_size > 1:
Zhang, Liangang's avatar
Zhang, Liangang committed
227
            local_gpu_memory = get_available_gpu_memory(self.device, self.gpu_id)
228
            if min_per_gpu_memory < local_gpu_memory * 0.9:
229
230
231
                raise ValueError(
                    "The memory capacity is unbalanced. Some GPUs may be occupied by other processes."
                )
Lianmin Zheng's avatar
Lianmin Zheng committed
232

233
        return min_per_gpu_memory
234

235
236
237
238
239
240
241
242
243
244
245
246
247
    def setup_model(self):
        try:
            from vllm.config import VllmConfig

            vllm_config = VllmConfig()
            vllm_config.model_config = self.vllm_model_config
            vllm_config.load_config = self.load_config
            vllm_config.device_config = DeviceConfig(self.device)
            vllm_config.quant_config = VllmConfig._get_quantization_config(
                vllm_config.model_config, vllm_config.load_config
            )
            return get_model(vllm_config=vllm_config)
        except ImportError:
Lianmin Zheng's avatar
Lianmin Zheng committed
248
249
250
251
252
253
254
255
256
257
258
            pass

        return get_model(
            model_config=self.vllm_model_config,
            load_config=self.load_config,
            device_config=DeviceConfig(self.device),
            parallel_config=None,
            scheduler_config=None,
            lora_config=None,
            cache_config=None,
        )
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277

    def get_model_config_params(self):
        sig = inspect.signature(VllmModelConfig.__init__)
        params = {
            "model": self.server_args.model_path,
            "quantization": self.server_args.quantization,
            "tokenizer": None,
            "tokenizer_mode": None,
            "trust_remote_code": self.server_args.trust_remote_code,
            "dtype": self.server_args.dtype,
            "seed": self.server_args.random_seed,
            "skip_tokenizer_init": True,
        }

        if "task" in sig.parameters:
            params["task"] = ""

        return params

Lianmin Zheng's avatar
Lianmin Zheng committed
278
    def load_model(self):
279
        logger.info(
Zhang, Liangang's avatar
Zhang, Liangang committed
280
            f"Load weight begin. avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
281
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
282
283
284

        # This can reduce thread conflicts and speed up weight loading.
        torch.set_num_threads(1)
Zhang, Liangang's avatar
Zhang, Liangang committed
285
286
287
288
289
290
291
292
        if self.device == "cuda":
            if torch.cuda.get_device_capability()[0] < 8:
                logger.info(
                    "Compute capability below sm80. Use float16 due to lack of bfloat16 support."
                )
                self.server_args.dtype = "float16"
                if torch.cuda.get_device_capability()[1] < 5:
                    raise RuntimeError("SGLang only supports sm75 and above.")
Lianmin Zheng's avatar
Lianmin Zheng committed
293

Lianmin Zheng's avatar
Lianmin Zheng committed
294
        # Prepare the vllm model config
295
296
297
298
        self.load_config = LoadConfig(
            load_format=self.server_args.load_format,
            download_dir=self.server_args.download_dir,
        )
299
300
        monkey_patch_vllm_model_config()
        self.vllm_model_config = VllmModelConfig(**self.get_model_config_params())
301
        if self.model_config.model_override_args is not None:
302
            self.vllm_model_config.hf_config.update(
303
                self.model_config.model_override_args
304
            )
305

306
307
        self.model = self.setup_model()

308
        self.sliding_window_size = (
309
310
            self.model.get_attention_sliding_window_size()
            if hasattr(self.model, "get_attention_sliding_window_size")
311
312
            else None
        )
313
        self.dtype = self.vllm_model_config.dtype
314

315
        logger.info(
316
            f"Load weight end. "
317
            f"type={type(self.model).__name__}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
318
            f"dtype={self.dtype}, "
Zhang, Liangang's avatar
Zhang, Liangang committed
319
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
320
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
321

322
323
    def update_weights(self, model_path: str, load_format: str):
        """Update weights in-place."""
324
325
326
327
328
329
330
331
        from vllm.model_executor.model_loader.loader import (
            DefaultModelLoader,
            device_loading_context,
            get_model_loader,
        )
        from vllm.model_executor.model_loader.utils import set_default_torch_dtype

        logger.info(
332
            f"Update weights begin. "
Zhang, Liangang's avatar
Zhang, Liangang committed
333
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
334
335
        )

Zhang, Liangang's avatar
Zhang, Liangang committed
336
        target_device = torch.device(self.device)
337
338

        try:
339
340
341
            model_config_params = self.get_model_config_params()
            model_config_params["model"] = model_path
            vllm_model_config = VllmModelConfig(**model_config_params)
342
        except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
343
344
            message = f"Failed to load model config: {e}."
            return False, message
345
346
347
348
349
350

        load_config = LoadConfig(load_format=load_format)

        # Only support vllm DefaultModelLoader for now
        loader = get_model_loader(load_config)
        if not isinstance(loader, DefaultModelLoader):
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
            message = f"Failed to get model loader: {loader}."
            return False, message
353
354
355

        def get_weight_iter(config):
            iter = loader._get_weights_iterator(
356
357
358
359
360
361
362
                DefaultModelLoader.Source(
                    config.model,
                    revision=config.revision,
                    fall_back_to_pt=getattr(
                        self.model, "fall_back_to_pt_during_load", True
                    ),
                )
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
            )
            return iter

        def model_load_weights(model, iter):
            model.load_weights(iter)
            for _, module in self.model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    with device_loading_context(module, target_device):
                        quant_method.process_weights_after_loading(module)
            return model

        with set_default_torch_dtype(vllm_model_config.dtype):
            try:
                iter = get_weight_iter(vllm_model_config)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
379
                message = f"Failed to get weights iterator: {e}."
380
381
382
383
                return False, message
            try:
                model = model_load_weights(self.model, iter)
            except Exception as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
384
385
386
                message = (
                    f"Failed to update weights: {e}.\nRolling back to original weights."
                )
387
388
389
390
391
392
393
394
395
396
397
398
399
                del iter
                gc.collect()
                iter = get_weight_iter(self.vllm_model_config)
                self.model = model_load_weights(self.model, iter)
                return False, message

        self.model = model
        self.server_args.model_path = model_path
        self.server_args.load_format = load_format
        self.vllm_model_config = vllm_model_config
        self.load_config = load_config
        self.model_config.path = model_path

400
        logger.info("Update weights end.")
Lianmin Zheng's avatar
Lianmin Zheng committed
401
        return True, "Succeeded to update model weights."
402

403
404
405
406
407
408
409
410
411
412
413
    def init_lora_manager(self):
        self.lora_manager = LoRAManager(
            base_model=self.model,
            lora_paths=self.server_args.lora_paths,
            base_hf_config=self.model_config.hf_config,
            max_loras_per_batch=self.server_args.max_loras_per_batch,
            load_config=self.load_config,
            dtype=self.dtype,
        )
        logger.info("LoRA manager ready.")

414
    def profile_max_num_token(self, total_gpu_memory: int):
415
        available_gpu_memory = get_available_gpu_memory(
Zhang, Liangang's avatar
Zhang, Liangang committed
416
            self.device, self.gpu_id, distributed=self.tp_size > 1
417
        )
418
419
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
420
            and not self.server_args.disable_mla
421
422
423
424
        ):
            cell_size = (
                (self.model_config.kv_lora_rank + self.model_config.qk_rope_head_dim)
                * self.model_config.num_hidden_layers
425
                * torch._utils._element_size(self.kv_cache_dtype)
426
427
428
429
430
431
432
            )
        else:
            cell_size = (
                self.model_config.get_num_kv_heads(self.tp_size)
                * self.model_config.head_dim
                * self.model_config.num_hidden_layers
                * 2
433
                * torch._utils._element_size(self.kv_cache_dtype)
434
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
435
436
437
        rest_memory = available_gpu_memory - total_gpu_memory * (
            1 - self.mem_fraction_static
        )
438
        max_num_token = int(rest_memory * (1 << 30) // cell_size)
Lianmin Zheng's avatar
Lianmin Zheng committed
439
440
        return max_num_token

441
    def init_memory_pool(
442
443
        self,
        total_gpu_memory: int,
444
445
        max_num_reqs: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
446
    ):
447
448
449
        if self.server_args.kv_cache_dtype == "auto":
            self.kv_cache_dtype = self.dtype
        elif self.server_args.kv_cache_dtype == "fp8_e5m2":
HAI's avatar
HAI committed
450
451
452
453
            if is_hip():  # Using natively supported format
                self.kv_cache_dtype = torch.float8_e5m2fnuz
            else:
                self.kv_cache_dtype = torch.float8_e5m2
454
455
456
457
458
        else:
            raise ValueError(
                f"Unsupported kv_cache_dtype: {self.server_args.kv_cache_dtype}."
            )

459
        self.max_total_num_tokens = self.profile_max_num_token(total_gpu_memory)
460
461
        if max_total_tokens is not None:
            if max_total_tokens > self.max_total_num_tokens:
462
                logging.warning(
463
464
465
466
467
                    f"max_total_tokens={max_total_tokens} is larger than the profiled value "
                    f"{self.max_total_num_tokens}. "
                    f"Use the profiled value instead."
                )
            self.max_total_num_tokens = min(self.max_total_num_tokens, max_total_tokens)
468

469
        if self.max_total_num_tokens <= 0:
470
            raise RuntimeError(
471
                "Not enough memory. Please try to increase --mem-fraction-static."
472
            )
473

Liangsheng Yin's avatar
Liangsheng Yin committed
474
        if max_num_reqs is None:
475
476
477
478
479
480
481
            max_num_reqs = min(
                max(
                    int(
                        self.max_total_num_tokens / self.model_config.context_len * 512
                    ),
                    2048,
                ),
482
                4096,
Liangsheng Yin's avatar
Liangsheng Yin committed
483
484
485
            )

        self.req_to_token_pool = ReqToTokenPool(
486
487
            size=max_num_reqs + 1,
            max_context_len=self.model_config.context_len + 4,
Zhang, Liangang's avatar
Zhang, Liangang committed
488
            device=self.device,
489
            use_records=False,
Lianmin Zheng's avatar
Lianmin Zheng committed
490
        )
491
492
        if (
            self.model_config.attention_arch == AttentionArch.MLA
Ke Bao's avatar
Ke Bao committed
493
            and not self.server_args.disable_mla
494
495
496
        ):
            self.token_to_kv_pool = MLATokenToKVPool(
                self.max_total_num_tokens,
497
                dtype=self.kv_cache_dtype,
498
499
500
                kv_lora_rank=self.model_config.kv_lora_rank,
                qk_rope_head_dim=self.model_config.qk_rope_head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
501
                device=self.device,
502
            )
Shuo Yang's avatar
Shuo Yang committed
503
504
505
506
507
508
509
510
511
512
        elif self.server_args.enable_double_sparsity:
            self.token_to_kv_pool = DoubleSparseTokenToKVPool(
                self.max_total_num_tokens,
                dtype=self.kv_cache_dtype,
                head_num=self.model_config.get_num_kv_heads(self.tp_size),
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
                device=self.device,
                heavy_channel_num=self.server_args.ds_heavy_channel_num,
            )
513
514
515
        else:
            self.token_to_kv_pool = MHATokenToKVPool(
                self.max_total_num_tokens,
516
                dtype=self.kv_cache_dtype,
517
518
519
                head_num=self.model_config.get_num_kv_heads(self.tp_size),
                head_dim=self.model_config.head_dim,
                layer_num=self.model_config.num_hidden_layers,
Zhang, Liangang's avatar
Zhang, Liangang committed
520
                device=self.device,
521
            )
522
        logger.info(
523
            f"Memory pool end. "
Zhang, Liangang's avatar
Zhang, Liangang committed
524
            f"avail mem={get_available_gpu_memory(self.device, self.gpu_id):.2f} GB"
525
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
526

Lianmin Zheng's avatar
Lianmin Zheng committed
527
528
529
530
531
532
533
534
535
    def init_cublas(self):
        """We need to run a small matmul to init cublas. Otherwise, it will raise some errors later."""
        dtype = torch.float16
        device = "cuda"
        a = torch.ones((16, 16), dtype=dtype, device=device)
        b = torch.ones((16, 16), dtype=dtype, device=device)
        c = a @ b
        return c

536
537
538
539
540
541
542
543
    def init_attention_backend(self):
        """Init attention kernel backend."""
        if self.server_args.attention_backend == "flashinfer":
            self.attn_backend = FlashInferAttnBackend(self)
        elif self.server_args.attention_backend == "triton":
            assert self.sliding_window_size is None, (
                "Window attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
544
            )
545
            assert not self.model_config.is_encoder_decoder, (
546
547
548
                "Cross attention is not supported in the triton attention backend. "
                "Please use `--attention-backend flashinfer`."
            )
Shuo Yang's avatar
Shuo Yang committed
549
550
551
552
            if self.server_args.enable_double_sparsity:
                self.attn_backend = DoubleSparseAttnBackend(self)
            else:
                self.attn_backend = TritonAttnBackend(self)
553
        else:
554
555
            raise ValueError(
                f"Invalid attention backend: {self.server_args.attention_backend}"
556
            )
557

Shuo Yang's avatar
Shuo Yang committed
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    def init_double_sparsity_channel_config(self, selected_channel):

        selected_channel = "." + selected_channel + "_proj"
        self.sorted_channels = []
        # load channel config
        with open(self.server_args.ds_channel_config_path, "r") as f:
            channel_config = json.load(f)

        for i in range(self.model_config.num_hidden_layers):
            key = "model.layers." + str(i) + ".self_attn" + selected_channel
            self.sorted_channels.append(
                torch.tensor(channel_config[key])[
                    :, : self.server_args.ds_heavy_channel_num
                ]
                .contiguous()
                .cuda()
            )

576
    def init_cuda_graphs(self):
577
        """Capture cuda graphs."""
578
579
580
581
        from sglang.srt.model_executor.cuda_graph_runner import CudaGraphRunner

        self.cuda_graph_runner = None

582
583
584
585
        if not self.is_generation:
            # TODO: Currently, cuda graph only captures decode steps, which only exists for generation models
            return

586
587
        if self.server_args.disable_cuda_graph:
            return
588

589
        logger.info("Capture cuda graph begin. This can take up to several minutes.")
590
        self.cuda_graph_runner = CudaGraphRunner(self)
591

592
593
594
595
596
597
598
    def apply_torch_tp(self):
        logger.info(f"Enabling torch tensor parallelism on {self.tp_size} devices.")
        from sglang.srt.model_parallel import tensor_parallel

        device_mesh = torch.distributed.init_device_mesh(self.device, (self.tp_size,))
        tensor_parallel(self.model, device_mesh)

599
    def forward_decode(self, forward_batch: ForwardBatch):
600
        if self.cuda_graph_runner and self.cuda_graph_runner.can_run(forward_batch):
601
            return self.cuda_graph_runner.replay(forward_batch)
602

603
604
        forward_batch.positions = (forward_batch.seq_lens - 1).to(torch.int64)
        self.attn_backend.init_forward_metadata(forward_batch)
605
        return self.model.forward(
606
            forward_batch.input_ids, forward_batch.positions, forward_batch
Lianmin Zheng's avatar
Lianmin Zheng committed
607
608
        )

609
    def forward_extend(self, forward_batch: ForwardBatch):
610
        self.attn_backend.init_forward_metadata(forward_batch)
611
        if self.is_generation:
Rin Intachuen's avatar
Rin Intachuen committed
612
613
614
615
616
617
618
619
620
621
622
            if forward_batch.input_embeds is None:
                return self.model.forward(
                    forward_batch.input_ids, forward_batch.positions, forward_batch
                )
            else:
                return self.model.forward(
                    forward_batch.input_ids,
                    forward_batch.positions,
                    forward_batch,
                    input_embeds=forward_batch.input_embeds.bfloat16(),
                )
623
624
625
        else:
            # Only embedding models have get_embedding parameter
            return self.model.forward(
626
627
628
                forward_batch.input_ids,
                forward_batch.positions,
                forward_batch,
629
630
                get_embedding=True,
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
631

Ke Bao's avatar
Ke Bao committed
632
    def forward_idle(self, forward_batch: ForwardBatch):
633
634
635
        if self.cuda_graph_runner and self.cuda_graph_runner.can_run(forward_batch):
            return self.cuda_graph_runner.replay(forward_batch)

Ke Bao's avatar
Ke Bao committed
636
637
638
639
        return self.model.forward(
            forward_batch.input_ids, forward_batch.positions, forward_batch
        )

640
641
642
643
644
    def forward(self, forward_batch: ForwardBatch) -> LogitsProcessorOutput:
        if forward_batch.forward_mode.is_decode():
            return self.forward_decode(forward_batch)
        elif forward_batch.forward_mode.is_extend():
            return self.forward_extend(forward_batch)
Ke Bao's avatar
Ke Bao committed
645
646
        elif forward_batch.forward_mode.is_idle():
            return self.forward_idle(forward_batch)
Lianmin Zheng's avatar
Lianmin Zheng committed
647
        else:
648
            raise ValueError(f"Invaid forward mode: {forward_batch.forward_mode}")
649

650
651
652
653
    def sample(
        self, logits_output: LogitsProcessorOutput, forward_batch: ForwardBatch
    ) -> torch.Tensor:
        sampling_info = forward_batch.sampling_info
654
655
656
657
658
659
660
661
662
        if sampling_info.sampling_info_done:
            # Overlap mode: the function update_regex_vocab_mask was executed
            # in process_batch_result of the last batch.
            if sampling_info.grammars:
                sampling_info.sampling_info_done.wait()
        else:
            # Normal mode: Put CPU-heavy tasks here. They will be overlapped with the forward pass.
            sampling_info.update_regex_vocab_mask()
            sampling_info.update_penalties()
663
664
665
666
667
668
669
        logits = self.apply_logits_bias(logits_output.next_token_logits, sampling_info)

        # Sample the next tokens.
        next_token_ids = self.sampler(logits, sampling_info)
        return next_token_ids

    def apply_logits_bias(self, logits: torch.Tensor, sampling_info: SamplingBatchInfo):
670
671
672
673
674
675
        # Apply logit_bias
        if sampling_info.logit_bias is not None:
            logits.add_(sampling_info.logit_bias)

        # min-token, presence, frequency
        if sampling_info.linear_penalties is not None:
676
            logits.add_(sampling_info.linear_penalties)
677
678
679
680
681
682
683
684
685
686
687

        # repetition
        if sampling_info.scaling_penalties is not None:
            logits = torch.where(
                logits > 0,
                logits / sampling_info.scaling_penalties,
                logits * sampling_info.scaling_penalties,
            )

        # Apply regex vocab_mask
        if sampling_info.vocab_mask is not None:
688
            sampling_info.apply_mask(logits=logits, vocab_mask=sampling_info.vocab_mask)
689
690
691

        return logits

Yineng Zhang's avatar
Yineng Zhang committed
692
693
694
695
696
697
698
699
700
    @property
    def model_is_mrope(self) -> bool:
        """Detect if the model has "mrope" rope_scaling type.
        mrope requires keep "rope_deltas" between prompt and decoding phases."""
        rope_scaling = getattr(self.model_config.hf_config, "rope_scaling", {})
        if rope_scaling is None:
            return False
        return rope_scaling.get("type", None) == "mrope"

701
702
703
704
705
706
707
708

@lru_cache()
def import_model_classes():
    model_arch_name_to_cls = {}
    package_name = "sglang.srt.models"
    package = importlib.import_module(package_name)
    for _, name, ispkg in pkgutil.iter_modules(package.__path__, package_name + "."):
        if not ispkg:
709
710
711
            try:
                module = importlib.import_module(name)
            except Exception as e:
712
713
714
                logger.warning(f"Ignore import error when loading {name}. {e}")
                if crash_on_warnings():
                    raise ValueError(f"Ignore import error when loading {name}. {e}")
715
                continue
716
            if hasattr(module, "EntryClass"):
717
                entry = module.EntryClass
718
719
720
                if isinstance(
                    entry, list
                ):  # To support multiple model classes in one module
721
                    for tmp in entry:
722
723
724
                        assert (
                            tmp.__name__ not in model_arch_name_to_cls
                        ), f"Duplicated model implementation for {tmp.__name__}"
725
                        model_arch_name_to_cls[tmp.__name__] = tmp
726
                else:
727
728
729
                    assert (
                        entry.__name__ not in model_arch_name_to_cls
                    ), f"Duplicated model implementation for {entry.__name__}"
730
                    model_arch_name_to_cls[entry.__name__] = entry
Qubitium's avatar
Qubitium committed
731

732
733
734
735
736
    return model_arch_name_to_cls


def load_model_cls_srt(model_arch: str) -> Optional[Type[nn.Module]]:
    model_arch_name_to_cls = import_model_classes()
Qubitium's avatar
Qubitium committed
737

738
739
740
741
742
743
744
745
746
    if model_arch not in model_arch_name_to_cls:
        raise ValueError(
            f"Unsupported architectures: {model_arch}. "
            f"Supported list: {list(model_arch_name_to_cls.keys())}"
        )
    return model_arch_name_to_cls[model_arch]


# Monkey patch model loader
Yineng Zhang's avatar
Yineng Zhang committed
747
setattr(ModelRegistry, "_try_load_model_cls", load_model_cls_srt)
748
749
750
751
setattr(ModelRegistry, "is_multimodal_model", lambda model_architectures: False)
setattr(ModelRegistry, "is_attention_free_model", lambda model_architectures: False)
setattr(ModelRegistry, "model_has_inner_state", lambda model_architectures: False)
setattr(ModelRegistry, "is_embedding_model", lambda model_architectures: False)