server_args.py 90.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
27
from sglang.srt.layers.utils import is_sm100_supported
28
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
29
from sglang.srt.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_flashinfer_available,
HAI's avatar
HAI committed
37
    is_hip,
38
    is_port_available,
39
    is_remote_url,
40
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
41
    nullable_str,
42
)
43

44
45
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
49
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
53
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    load_format: str = "auto"
55
    model_loader_extra_config: str = "{}"
56
    trust_remote_code: bool = False
57
    context_length: Optional[int] = None
58
    is_embedding: bool = False
59
    enable_multimodal: Optional[bool] = None
60
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
62

Lianmin Zheng's avatar
Lianmin Zheng committed
63
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
68
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
69

Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
72
73
74
75
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
76
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
77
    mem_fraction_static: Optional[float] = None
78
    max_running_requests: Optional[int] = None
79
    max_queued_requests: Optional[int] = sys.maxsize
80
    max_total_tokens: Optional[int] = None
81
    chunked_prefill_size: Optional[int] = None
82
    max_prefill_tokens: int = 16384
83
    schedule_policy: str = "fcfs"
84
    schedule_conservativeness: float = 1.0
85
    cpu_offload_gb: int = 0
86
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
90

Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
93
    tp_size: int = 1
94
95
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
96
    stream_interval: int = 1
97
    stream_output: bool = False
98
    random_seed: Optional[int] = None
99
    constrained_json_whitespace_pattern: Optional[str] = None
100
    watchdog_timeout: float = 300
101
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
102
    download_dir: Optional[str] = None
103
    base_gpu_id: int = 0
104
    gpu_id_step: int = 1
105
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
108

    # Logging
    log_level: str = "info"
109
    log_level_http: Optional[str] = None
110
    log_requests: bool = False
111
    log_requests_level: int = 0
112
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
113
    show_time_cost: bool = False
114
    enable_metrics: bool = False
115
    enable_metrics_for_all_schedulers: bool = False
116
117
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    bucket_e2e_request_latency: Optional[List[float]] = None
119
    collect_tokens_histogram: bool = False
120
    decode_log_interval: int = 40
121
    enable_request_time_stats_logging: bool = False
122
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
123

124
    # API related
125
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
126
127
128
    served_model_name: Optional[str] = None
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
129
    file_storage_path: str = "sglang_storage"
130
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
131
    reasoning_parser: Optional[str] = None
132
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
133

134
135
136
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
137

138
    # Multi-node distributed serving
139
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    nnodes: int = 1
141
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
144

    # Model override args in JSON
    json_model_override_args: str = "{}"
145
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
146

147
    # LoRA
148
    enable_lora: Optional[bool] = None
149
    max_lora_rank: Optional[int] = None
150
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
151
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
152
    max_loaded_loras: Optional[int] = None
153
    max_loras_per_batch: int = 8
154
    lora_backend: str = "triton"
155
156

    # Kernel backend
157
    attention_backend: Optional[str] = None
158
159
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
160
    sampling_backend: Optional[str] = None
161
    grammar_backend: Optional[str] = None
162
    mm_attention_backend: Optional[str] = None
163

164
165
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
166
    speculative_draft_model_path: Optional[str] = None
167
168
169
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
170
171
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
172
    speculative_token_map: Optional[str] = None
173

174
175
    # Expert parallelism
    ep_size: int = 1
176
    moe_a2a_backend: Optional[Literal["deepep"]] = None
177
178
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
179
    enable_flashinfer_allreduce_fusion: bool = False
180
    deepep_mode: Literal["auto", "normal", "low_latency"] = "auto"
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199
200
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
201
202
    hicache_io_backend: str = "kernel"
    hicache_mem_layout: str = "layer_first"
Lianmin Zheng's avatar
Lianmin Zheng committed
203
204
    hicache_storage_backend: Optional[str] = None

205
206
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
207
    ds_channel_config_path: Optional[str] = None
208
209
210
211
212
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

213
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
214
    disable_radix_cache: bool = False
215
216
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
217
    disable_cuda_graph: bool = False
218
    disable_cuda_graph_padding: bool = False
219
    enable_profile_cuda_graph: bool = False
220
    enable_cudagraph_gc: bool = False
221
    enable_nccl_nvls: bool = False
222
    enable_symm_mem: bool = False
223
    enable_tokenizer_batch_encode: bool = False
224
    disable_outlines_disk_cache: bool = False
225
    disable_custom_all_reduce: bool = False
226
    enable_mscclpp: bool = False
227
    disable_overlap_schedule: bool = False
228
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
229
    enable_dp_attention: bool = False
230
    enable_dp_lm_head: bool = False
231
    enable_two_batch_overlap: bool = False
232
    tbo_token_distribution_threshold: float = 0.48
233
    enable_torch_compile: bool = False
234
    torch_compile_max_bs: int = 32
235
    torchao_config: str = ""
236
    enable_nan_detection: bool = False
237
    enable_p2p_check: bool = False
238
    triton_attention_reduce_in_fp32: bool = False
239
    triton_attention_num_kv_splits: int = 8
240
    num_continuous_decode_steps: int = 1
241
    delete_ckpt_after_loading: bool = False
242
    enable_memory_saver: bool = False
243
    allow_auto_truncate: bool = False
244
    enable_custom_logit_processor: bool = False
245
    flashinfer_mla_disable_ragged: bool = False
246
    disable_shared_experts_fusion: bool = False
247
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
248
    disable_fast_image_processor: bool = False
249
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
250
    enable_triton_kernel_moe: bool = False
251
252
253
254
255

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
256
    debug_tensor_dump_prefill_only: bool = False
257

Lianmin Zheng's avatar
Lianmin Zheng committed
258
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
259
    disaggregation_mode: str = "null"
260
    disaggregation_transfer_backend: str = "mooncake"
261
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
262
263
264
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
265
    disaggregation_ib_device: Optional[str] = None
266
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
267
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
268

269
270
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
271
    weight_loader_disable_mmap: bool = False
272

273
274
275
276
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

277
278
279
    # For tool server
    tool_server: Optional[str] = None

280
281
282
283
    # Deprecated arguments
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False

Lianmin Zheng's avatar
Lianmin Zheng committed
284
    def __post_init__(self):
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        # Check deprecated arguments
        def print_deprecated_warning(message: str):
            logger.warning(f"\033[33m{message}\033[0m")

        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            print_deprecated_warning(
                "NOTE: --enable-ep-moe is deprecated. Please set `--ep-size` to the same value as `--tp-size` instead."
            )
        if self.enable_deepep_moe:
            self.moe_a2a_backend = "deepep"
            print_deprecated_warning(
                "NOTE: --enable-deepep-moe is deprecated. Please set `--moe-a2a-backend` to 'deepep' instead."
            )

301
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
302
303
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
304
305
        if self.served_model_name is None:
            self.served_model_name = self.model_path
306
307
        if self.device is None:
            self.device = get_device()
308
309
310
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
311
        gpu_mem = get_device_memory_capacity(self.device)
312

313
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
314
        if self.mem_fraction_static is None:
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
343
                else:
344
345
346
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

347
                if self.speculative_algorithm is not None:
348
349
350
351
352
353
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
354
            else:
355
                self.mem_fraction_static = 0.88
356

357
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
358
            # Multimodal models need more memory for the image processor
359
360
361
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
362
363
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
364

365
366
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
367
368
369
370
371
372
373
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
374
            else:
375
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
376

377
378
379
380
381
382
383
384
385
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

386
        # Set kernel backends for hpu device
387
388
389
390
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
391
        # Set kernel backends
392
393
394
395
396
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

397
        if self.sampling_backend is None:
398
399
400
401
402
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
403
            logger.warning(
404
405
406
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
407

408
409
410
411
412
413
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

414
415
416
417
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
418
419
420
421
422
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

423
424
425
426
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
427
428
429
430
431
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
        if self.attention_backend == "trtllm_mla":
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
            if self.speculative_algorithm is not None:
                raise ValueError(
                    "trtllm_mla backend does not support speculative decoding yet."
                )

448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
        if self.attention_backend == "trtllm_mha":
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MHA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [16, 32, 64]:
                logger.warning(
                    f"TensorRT-LLM MHA only supports page_size of 16, 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64

            if self.speculative_algorithm is not None:
                raise ValueError(
                    "trtllm_mla backend does not support speculative decoding yet."
                )
464
465
466
467
        model_arch = self.get_hf_config().architectures[0]
        if model_arch in ["GptOssForCausalLM"]:
            self.attention_backend = "triton"
            self.enable_triton_kernel_moe = True
468
            self.disable_hybrid_swa_memory = True
469

Ying Sheng's avatar
Ying Sheng committed
470
471
472
473
474
475
476
477
478
479
            quantization_config = getattr(
                self.get_hf_config(), "quantization_config", None
            )
            if (
                quantization_config is not None
                and quantization_config.get("quant_method") == "mxfp4"
            ):
                # use bf16 for mxfp4 triton kernels
                self.dtype = "bfloat16"

480
481
482
483
484
485
486
487
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

488
489
490
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
491

492
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
493
        if self.enable_dp_attention:
494
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
495
496
497
498
499
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
500
            logger.warning(
501
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
502
            )
503

504
505
506
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
507
            ), "Please enable dp attention when setting enable_dp_lm_head. "
508

509
        # MoE kernel
510
        if self.enable_flashinfer_cutlass_moe:
511
512
513
514
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"
515
516
517
518
            assert self.ep_size in [
                1,
                self.tp_size,
            ], "The expert parallel size must be 1 or the same as the tensor parallel size"
519

520
521
522
523
524
525
526
        if self.enable_flashinfer_trtllm_moe:
            if not self.disable_shared_experts_fusion:
                self.disable_shared_experts_fusion = True
                logger.warning(
                    "FlashInfer TRTLLM MoE is enabled. --disable-shared-experts-fusion is automatically set."
                )

527
        # DeepEP MoE
528
        if self.moe_a2a_backend == "deepep":
529
530
531
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
532
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
533
            logger.warning(
534
535
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
536

537
538
539
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
540
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
541
542
543
544
545
546
547
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
548
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
549
550
            )

551
        if self.enable_eplb:
552
            assert self.ep_size > 1 or self.moe_a2a_backend is not None
553

554
555
556
557
558
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

559
        if self.expert_distribution_recorder_buffer_size is None:
560
561
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
562
563
564
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
565
566
567
568
569
570
571
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

572
        # Speculative Decoding
573
574
575
576
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
577
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
578
            if self.max_running_requests is None:
579
                self.max_running_requests = 48
580
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
581
            logger.warning(
582
                "Overlap scheduler is disabled because of using "
583
                "eagle speculative decoding."
584
            )
585
586
587
588
589
590
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
591

Lianmin Zheng's avatar
Lianmin Zheng committed
592
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
593
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
594
                # Auto set draft_model_path DeepSeek-V3/R1
595
596
597
598
599
600
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
601

602
603
604
605
606
607
608
609
610
611
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
612
                ) = auto_choose_speculative_params(self)
613

614
615
616
617
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
618
                logger.warning(
619
620
621
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
622

623
            # The token generated from the verify step is counted.
624
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
625
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
626

627
628
629
630
631
632
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

633
        # Model loading
634
635
        if is_remote_url(self.model_path):
            self.load_format = "remote"
636
637
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
638

Byron Hsu's avatar
Byron Hsu committed
639
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
640
641
642
643
644
645
646
647
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
648
            self.disable_radix_cache = True
649
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
650
651
652
653
654
655
656
657
658
659
660
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
661

662
        # Propagate env vars
663
664
665
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
666
667
668
669
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
670

Lianmin Zheng's avatar
Lianmin Zheng committed
671
672
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
673
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
674
675
        parser.add_argument(
            "--model-path",
676
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
677
678
679
680
681
682
683
684
685
686
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
687
688
689
690
691
692
693
694
695
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
696
697
698
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
699
            help="If set, skip init tokenizer and pass input_ids in generate request.",
700
        )
701
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
704
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
705
706
707
708
709
710
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
711
                "sharded_state",
712
713
                "gguf",
                "bitsandbytes",
714
                "layered",
715
                "remote",
716
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
717
718
719
720
721
722
723
724
725
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
726
            "which is mainly for profiling."
727
728
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
729
730
731
732
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
733
        )
734
735
736
737
738
739
740
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
741
742
743
744
745
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
817
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
818
            "--dtype",
Cody Yu's avatar
Cody Yu committed
819
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
820
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
821
822
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
823
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
824
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
825
826
827
828
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
829
830
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
831
832
833
834
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
835
836
837
838
839
840
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
841
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
842
                "bitsandbytes",
843
                "gguf",
844
                "modelopt",
845
                "modelopt_fp4",
846
                "petit_nvfp4",
847
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
848
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
849
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
850
                "qoq",
851
                "w4afp8",
852
                "mxfp4",
Ying Sheng's avatar
Ying Sheng committed
853
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
854
855
            help="The quantization method.",
        )
856
857
858
859
860
861
862
863
864
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
865
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
866
            "--kv-cache-dtype",
867
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
868
869
870
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
871
        )
872

873
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
874
875
876
877
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
878
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
879
        )
880
881
882
883
884
885
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
886
887
888
889
890
891
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
892
893
894
895
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
896
897
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
898
        )
899
900
901
902
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
903
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
904
905
906
907
908
909
910
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
911
        parser.add_argument(
912
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
913
            type=str,
914
            default=ServerArgs.schedule_policy,
915
            choices=["lpm", "random", "fcfs", "dfs-weight", "lof"],
916
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
917
        )
918
919
920
921
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
922
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
923
        )
924
925
926
927
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
928
            help="How many GBs of RAM to reserve for CPU offloading.",
929
        )
930
931
932
933
934
935
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
936
937
938
939
940
941
942
943
944
945
946
947
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
948
949
950
951
952
953
954
955
956
957
958
959
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
960

Lianmin Zheng's avatar
Lianmin Zheng committed
961
962
963
964
965
966
967
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
968
        parser.add_argument(
969
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
970
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
971
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
972
            default=ServerArgs.tp_size,
973
            help="The tensor parallelism size.",
974
        )
975
976
977
978
979
980
981
982
983
984
985
986
987
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
988
989
990
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
991
            default=ServerArgs.stream_interval,
992
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
993
        )
994
995
996
997
998
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
999
1000
1001
1002
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
1003
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1004
        )
1005
1006
1007
1008
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
1009
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
1010
        )
1011
1012
1013
1014
1015
1016
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
1017
1018
1019
1020
1021
1022
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
1023
1024
1025
1026
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
1027
            help="Model download directory for huggingface.",
1028
        )
1029
1030
1031
1032
1033
1034
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
1035
1036
1037
1038
1039
1040
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
1041
1042
1043
1044
1045
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
1046
1047

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
1048
1049
1050
1051
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
1052
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1053
        )
1054
        parser.add_argument(
1055
1056
1057
1058
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
1059
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1060
        parser.add_argument(
1061
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
1062
            action="store_true",
1063
1064
1065
1066
1067
1068
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
1069
1070
1071
1072
1073
1074
1075
1076
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1077
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1078
1079
1080
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1081
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1082
        )
1083
1084
1085
1086
1087
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1088
1089
1090
1091
1092
1093
1094
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1122
1123
1124
1125
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1126
            help="The log interval of decode batch.",
1127
        )
1128
1129
1130
1131
1132
1133
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1134
1135
1136
1137
1138
1139
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1140

1141
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1142
1143
1144
1145
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1146
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1147
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1166
        parser.add_argument(
1167
            "--file-storage-path",
1168
            type=str,
1169
            default=ServerArgs.file_storage_path,
1170
1171
            help="The path of the file storage in backend.",
        )
1172
1173
1174
1175
1176
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1177
1178
1179
1180
1181
1182
1183
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1184
1185
1186
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1187
1188
1189
1190
1191
1192
1193
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1194
                "qwen3_coder",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
1195
                "glm45",
Chang Su's avatar
Chang Su committed
1196
                "step3",
Atream's avatar
Atream committed
1197
            ],
1198
            default=ServerArgs.tool_call_parser,
Chang Su's avatar
Chang Su committed
1199
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
1200
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1201

1202
1203
        # Data parallelism
        parser.add_argument(
1204
            "--data-parallel-size",
1205
1206
1207
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1208
            help="The data parallelism size.",
1209
1210
1211
1212
1213
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1214
            help="The load balancing strategy for data parallelism.",
1215
1216
1217
            choices=[
                "round_robin",
                "shortest_queue",
1218
                "minimum_tokens",
1219
1220
            ],
        )
1221

1222
        # Multi-node distributed serving
1223
        parser.add_argument(
1224
            "--dist-init-addr",
1225
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1226
            type=str,
1227
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1228
1229
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1230
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1231
        )
1232
1233
1234
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1235

Lianmin Zheng's avatar
Lianmin Zheng committed
1236
1237
1238
1239
1240
1241
1242
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1243
1244
1245
1246
1247
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1248

1249
        # LoRA
1250
1251
1252
1253
1254
1255
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1256
1257
1258
1259
1260
1261
1262
1263
1264
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1265
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1266
1267
            nargs="*",
            default=None,
1268
1269
1270
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1271
        )
1272
1273
1274
1275
1276
1277
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1278
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1279
1280
1281
1282
1283
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1284
1285
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
1286
1287
1288
1289
1290
1291
        parser.add_argument(
            "--max-loaded-loras",
            type=int,
            default=ServerArgs.max_loaded_loras,
            help="If specified, it limits the maximum number of LoRA adapters loaded in CPU memory at a time. The value must be greater than or equal to `--max-loras-per-batch`.",
        )
1292
1293
1294
1295
1296
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1297
1298
1299
        )

        # Kernel backend
1300
1301
1302
        parser.add_argument(
            "--attention-backend",
            type=str,
1303
            choices=[
1304
                "aiter",
1305
                "cutlass_mla",
1306
                "fa3",
1307
                "flashinfer",
1308
                "flashmla",
1309
                "intel_amx",
1310
                "torch_native",
1311
                "ascend",
1312
                "triton",
1313
                "trtllm_mla",
1314
                "trtllm_mha",
1315
            ],
1316
1317
1318
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )

        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1348
1349
1350
1351
1352
1353
1354
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1355
1356
1357
        parser.add_argument(
            "--grammar-backend",
            type=str,
1358
            choices=["xgrammar", "outlines", "llguidance", "none"],
1359
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1360
            help="Choose the backend for grammar-guided decoding.",
1361
        )
1362
1363
1364
1365
1366
1367
1368
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1369

1370
1371
1372
1373
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1374
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1391
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1392
1393
            default=ServerArgs.speculative_eagle_topk,
        )
1394
1395
1396
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1397
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1398
1399
            default=ServerArgs.speculative_num_draft_tokens,
        )
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1412
1413
1414
1415
1416
1417
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1418
1419
1420
1421
1422

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1423
            "--ep",
1424
1425
1426
1427
1428
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
1429
1430
1431
1432
1433
            "--moe-a2a-backend",
            type=str,
            choices=["deepep"],
            default=ServerArgs.moe_a2a_backend,
            help="Choose the backend for MoE A2A.",
1434
        )
1435
        parser.add_argument(
1436
            "--enable-flashinfer-cutlass-moe",
1437
            action="store_true",
1438
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP",
1439
        )
1440
        parser.add_argument(
1441
1442
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
1443
            help="Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP",
1444
1445
        )
        parser.add_argument(
1446
1447
1448
1449
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1527

Lianmin Zheng's avatar
Lianmin Zheng committed
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1560
1561
1562
1563
1564
1565
1566
1567
        parser.add_argument(
            "--hicache-mem-layout",
            type=str,
            choices=["layer_first", "page_first"],
            default=ServerArgs.hicache_mem_layout,
            help="The layout of host memory pool for hierarchical cache.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1568
1569
1570
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1571
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1572
1573
1574
1575
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )

1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1613
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1614
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1615
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1616
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1617
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1618
        )
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1631
1632
1633
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1634
            help="Disable cuda graph.",
1635
        )
1636
        parser.add_argument(
1637
1638
            "--disable-cuda-graph-padding",
            action="store_true",
1639
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1640
        )
1641
1642
1643
1644
1645
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1646
1647
1648
1649
1650
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1651
1652
1653
1654
1655
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1656
1657
1658
1659
1660
        parser.add_argument(
            "--enable-symm-mem",
            action="store_true",
            help="Enable NCCL symmetric memory for fast collectives.",
        )
1661
1662
1663
1664
1665
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1666
        parser.add_argument(
1667
            "--disable-outlines-disk-cache",
1668
            action="store_true",
1669
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1670
        )
1671
1672
1673
1674
1675
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1676
1677
1678
1679
1680
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1681
        parser.add_argument(
1682
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1683
            action="store_true",
1684
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1685
        )
1686
1687
1688
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1689
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1690
        )
Ke Bao's avatar
Ke Bao committed
1691
1692
1693
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1694
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1695
        )
1696
1697
1698
1699
1700
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1701
1702
1703
1704
1705
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1706
1707
1708
1709
1710
1711
        parser.add_argument(
            "--tbo-token-distribution-threshold",
            type=float,
            default=ServerArgs.tbo_token_distribution_threshold,
            help="The threshold of token distribution between two batches in micro-batch-overlap, determines whether to two-batch-overlap or two-chunk-overlap. Set to 0 denote disable two-chunk-overlap.",
        )
1712
1713
1714
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1715
1716
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1717
        parser.add_argument(
1718
            "--torch-compile-max-bs",
1719
            type=int,
1720
            default=ServerArgs.torch_compile_max_bs,
1721
1722
            help="Set the maximum batch size when using torch compile.",
        )
1723
1724
1725
1726
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1727
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1728
        )
1729
1730
1731
1732
1733
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1734
        parser.add_argument(
1735
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1736
            action="store_true",
1737
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1738
        )
1739
        parser.add_argument(
1740
            "--triton-attention-reduce-in-fp32",
1741
            action="store_true",
1742
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1743
            "This only affects Triton attention kernels.",
1744
        )
1745
1746
1747
1748
1749
1750
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1751
1752
1753
1754
1755
1756
1757
1758
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1759
1760
1761
1762
1763
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1764
1765
1766
1767
1768
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1769
1770
1771
1772
1773
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1774
1775
1776
1777
1778
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1779
        parser.add_argument(
1780
            "--flashinfer-mla-disable-ragged",
1781
            action="store_true",
1782
            help="Not using ragged prefill wrapper when running flashinfer mla",
1783
        )
1784
        parser.add_argument(
1785
1786
1787
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1788
        )
1789
1790
1791
1792
1793
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1794
1795
1796
1797
1798
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1799
1800
1801
1802
1803
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1804
1805
1806
1807
1808
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1829
1830
1831
1832
1833
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1834

Lianmin Zheng's avatar
Lianmin Zheng committed
1835
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1836
1837
1838
1839
1840
1841
1842
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1843
1844
1845
1846
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1847
            choices=["mooncake", "nixl", "ascend"],
1848
1849
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1850
1851
1852
1853
1854
1855
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1874
1875
1876
1877
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1878
1879
1880
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1881
        )
1882
1883
1884
1885
1886
1887
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1888
1889
1890
1891
1892
1893
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1894
1895

        # Custom weight loader
1896
1897
1898
1899
1900
1901
1902
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1903
1904
1905
1906
1907
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1908
1909

        # For PD-Multiplexing
1910
1911
1912
1913
1914
1915
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1916
1917
1918
1919
1920
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1921

1922
1923
1924
1925
1926
1927
1928
1929
        # For tool server
        parser.add_argument(
            "--tool-server",
            type=str,
            default=None,
            help="Either 'demo' or a comma-separated list of tool server urls to use for the model. If not specified, no tool server will be used.",
        )

1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
        # Deprecated arguments
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="(Deprecated) Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="(Deprecated) Enabling DeepEP MoE implementation for EP MoE.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1942
1943
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1944
        args.tp_size = args.tensor_parallel_size
1945
        args.pp_size = args.pipeline_parallel_size
1946
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1947
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1948
1949
1950
1951
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1952
        if is_valid_ipv6_address(self.host):
1953
1954
1955
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1956

Lianmin Zheng's avatar
Lianmin Zheng committed
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1968
    def check_server_args(self):
1969
        # Check parallel size constraints
1970
        assert (
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1981
        assert not (
1982
1983
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1984

1985
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1986
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1987

Lianmin Zheng's avatar
Lianmin Zheng committed
1988
1989
1990
1991
1992
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

1993
1994
1995
1996
1997
        # Check model architecture
        model_arch = self.get_hf_config().architectures[0]
        if "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"

1998
1999
2000
2001
2002
        if model_arch in [
            "Gemma2ForCausalLM",
            "Gemma3nForCausalLM",
            "Gemma3nForConditionalGeneration",
        ]:
2003
2004
            # FIXME: https://github.com/sgl-project/sglang/pull/7367 is not compatible with gemma2 model.
            # It failed at this test: https://github.com/sgl-project/sglang/actions/runs/16255155597/job/45890331952#step:4:736
2005
2006
2007
            logger.warning(
                f"Disable hybrid SWA memory for {model_arch} as it is not yet supported."
            )
2008
2009
            self.disable_hybrid_swa_memory = True

2010
        # Check LoRA
2011
2012
        self.check_lora_server_args()

2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
        assert (
            self.chunked_prefill_size % self.page_size == 0
        ), "chunked_prefill_size must be divisible by page_size"

2024
    def check_lora_server_args(self):
2025
2026
2027
2028
2029
2030
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and radix attention is in progress"

2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
                logger.info(
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
2051
                        self.lora_paths[name] = LoRARef(lora_name=name, lora_path=path)
2052
                    else:
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
                        self.lora_paths[lora_path] = LoRARef(
                            lora_name=lora_path,
                            lora_path=lora_path,
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
                    k: LoRARef(lora_name=k, lora_path=v)
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
2083

2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
            # Validate max_loaded_loras
            if self.max_loaded_loras is not None:
                assert self.max_loaded_loras >= self.max_loras_per_batch, (
                    "max_loaded_loras should be greater than or equal to max_loras_per_batch. "
                    f"max_loaded_loras={self.max_loaded_loras}, max_loras_per_batch={self.max_loras_per_batch}"
                )
                assert (
                    not self.lora_paths or len(self.lora_paths) <= self.max_loaded_loras
                ), (
                    "The number of LoRA paths should not exceed max_loaded_loras. "
                    f"max_loaded_loras={self.max_loaded_loras}, lora_paths={len(self.lora_paths)}"
                )

Lianmin Zheng's avatar
Lianmin Zheng committed
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )
        logger.warning(
            f"Multimodal model: Dynamically adjusted --mem-fraction-static "
            f"from: {original_server_arg_mem_fraction:.3f} to: {self.mem_fraction_static:.3f}."
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2147

Lianmin Zheng's avatar
Lianmin Zheng committed
2148
def prepare_server_args(argv: List[str]) -> ServerArgs:
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2161
    raw_args = parser.parse_args(argv)
2162
2163
2164
2165
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2166
2167
2168
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2169
2170
@dataclasses.dataclass
class PortArgs:
2171
2172
2173
2174
2175
2176
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2177

2178
2179
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2180

2181
2182
2183
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2184
2185
2186
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2187
    @staticmethod
2188
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2189
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2190
            nccl_port = server_args.port + random.randint(100, 1000)
2191
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2192
                if is_port_available(nccl_port):
2193
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2194
2195
                if nccl_port < 60000:
                    nccl_port += 42
2196
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2197
                    nccl_port -= 43
2198
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2199
            nccl_port = server_args.nccl_port
2200

2201
2202
2203
2204
2205
2206
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2207
                nccl_port=nccl_port,
2208
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2209
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2210
2211
2212
2213
2214
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2215
2216
2217
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2218
2219
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2220

2221
2222
2223
2224
2225
2226
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2227
2228
2229
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2230
            if dp_rank is None:
2231
                # TokenizerManager to DataParallelController
2232
                scheduler_input_port = port_base + 4
2233
            else:
2234
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2235
2236
2237
2238

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2239
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2240
                nccl_port=nccl_port,
2241
2242
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2243
            )
2244

2245
2246
2247
2248
2249
2250
2251
2252
2253
2254

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2265
2266


2267
def auto_choose_speculative_params(self: ServerArgs):
2268
2269
2270
2271
2272
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2273
    hf_config = self.get_hf_config()
2274
2275
    arch = hf_config.architectures[0]

2276
2277
2278
2279
2280
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2281
        return (3, 1, 4)
2282
2283
2284
2285
2286
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)