server_args.py 82.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
26
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
27
from sglang.srt.reasoning_parser import ReasoningParser
28
from sglang.srt.utils import (
29
30
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
31
    configure_ipv6,
32
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
33
    get_device_memory_capacity,
34
    is_flashinfer_available,
HAI's avatar
HAI committed
35
    is_hip,
36
    is_port_available,
37
    is_remote_url,
38
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
39
    nullable_str,
40
)
41

42
43
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
47
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
51
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    load_format: str = "auto"
53
    model_loader_extra_config: str = "{}"
54
    trust_remote_code: bool = False
55
    context_length: Optional[int] = None
56
    is_embedding: bool = False
57
    enable_multimodal: Optional[bool] = None
58
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
59
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
60

Lianmin Zheng's avatar
Lianmin Zheng committed
61
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
62
63
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
66
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
67

Lianmin Zheng's avatar
Lianmin Zheng committed
68
69
70
71
72
73
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
74
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
75
    mem_fraction_static: Optional[float] = None
76
    max_running_requests: Optional[int] = None
77
    max_total_tokens: Optional[int] = None
78
    chunked_prefill_size: Optional[int] = None
79
    max_prefill_tokens: int = 16384
80
    schedule_policy: str = "fcfs"
81
    schedule_conservativeness: float = 1.0
82
    cpu_offload_gb: int = 0
83
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
84
85
86
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
87

Lianmin Zheng's avatar
Lianmin Zheng committed
88
89
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
90
    tp_size: int = 1
91
92
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
93
    stream_interval: int = 1
94
    stream_output: bool = False
95
    random_seed: Optional[int] = None
96
    constrained_json_whitespace_pattern: Optional[str] = None
97
    watchdog_timeout: float = 300
98
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
99
    download_dir: Optional[str] = None
100
    base_gpu_id: int = 0
101
    gpu_id_step: int = 1
102
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
103
104
105

    # Logging
    log_level: str = "info"
106
    log_level_http: Optional[str] = None
107
    log_requests: bool = False
108
    log_requests_level: int = 0
109
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
110
    show_time_cost: bool = False
111
    enable_metrics: bool = False
112
    enable_metrics_for_all_schedulers: bool = False
113
114
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
115
    bucket_e2e_request_latency: Optional[List[float]] = None
116
    collect_tokens_histogram: bool = False
117
    decode_log_interval: int = 40
118
    enable_request_time_stats_logging: bool = False
119
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
120

121
    # API related
122
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
123
124
125
    served_model_name: Optional[str] = None
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
126
    file_storage_path: str = "sglang_storage"
127
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
128
    reasoning_parser: Optional[str] = None
129
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
130

131
132
133
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
134

135
    # Multi-node distributed serving
136
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
137
    nnodes: int = 1
138
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
139
140
141

    # Model override args in JSON
    json_model_override_args: str = "{}"
142
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
143

144
    # LoRA
145
    enable_lora: Optional[bool] = None
146
    max_lora_rank: Optional[int] = None
147
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
148
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
149
    max_loras_per_batch: int = 8
150
    lora_backend: str = "triton"
151
152

    # Kernel backend
153
154
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
155
    grammar_backend: Optional[str] = None
156
    mm_attention_backend: Optional[str] = None
157

158
159
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
160
    speculative_draft_model_path: Optional[str] = None
161
162
163
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
164
165
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
166
    speculative_token_map: Optional[str] = None
167

168
169
170
171
    # Expert parallelism
    ep_size: int = 1
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
172
    enable_flashinfer_moe: bool = False
173
    enable_flashinfer_allreduce_fusion: bool = False
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
190
191
192
193
194
195
196
197
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
    hicache_io_backend: str = ""
    hicache_storage_backend: Optional[str] = None

198
199
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
200
    ds_channel_config_path: Optional[str] = None
201
202
203
204
205
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

206
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
207
    disable_radix_cache: bool = False
208
209
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
210
    disable_cuda_graph: bool = False
211
    disable_cuda_graph_padding: bool = False
212
    enable_profile_cuda_graph: bool = False
213
    enable_nccl_nvls: bool = False
214
    enable_tokenizer_batch_encode: bool = False
215
    disable_outlines_disk_cache: bool = False
216
    disable_custom_all_reduce: bool = False
217
    enable_mscclpp: bool = False
218
    disable_overlap_schedule: bool = False
219
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
220
    enable_dp_attention: bool = False
221
    enable_dp_lm_head: bool = False
222
    enable_two_batch_overlap: bool = False
223
    enable_torch_compile: bool = False
224
    torch_compile_max_bs: int = 32
225
    torchao_config: str = ""
226
    enable_nan_detection: bool = False
227
    enable_p2p_check: bool = False
228
    triton_attention_reduce_in_fp32: bool = False
229
    triton_attention_num_kv_splits: int = 8
230
    num_continuous_decode_steps: int = 1
231
    delete_ckpt_after_loading: bool = False
232
    enable_memory_saver: bool = False
233
    allow_auto_truncate: bool = False
234
    enable_custom_logit_processor: bool = False
235
    flashinfer_mla_disable_ragged: bool = False
236
    disable_shared_experts_fusion: bool = False
237
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
238
    disable_fast_image_processor: bool = False
239
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
240
    enable_triton_kernel_moe: bool = False
241
242
243
244
245

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
246
    debug_tensor_dump_prefill_only: bool = False
247

Lianmin Zheng's avatar
Lianmin Zheng committed
248
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
249
    disaggregation_mode: str = "null"
250
    disaggregation_transfer_backend: str = "mooncake"
251
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
252
253
254
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
255
    disaggregation_ib_device: Optional[str] = None
256
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
257
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
258

259
260
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
261
    weight_loader_disable_mmap: bool = False
262

263
264
265
266
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Lianmin Zheng's avatar
Lianmin Zheng committed
267
    def __post_init__(self):
268
        # Expert parallelism
269
        # We put it here first due to some internal ckpt conversation issues.
270
271
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
272
            logger.warning(
273
274
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
275

276
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
277
278
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
279
280
        if self.served_model_name is None:
            self.served_model_name = self.model_path
281
282
        if self.device is None:
            self.device = get_device()
283
284
285
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
286
        gpu_mem = get_device_memory_capacity(self.device)
287

288
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
289
        if self.mem_fraction_static is None:
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
318
                else:
319
320
321
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

322
                if self.speculative_algorithm is not None:
323
324
325
326
327
328
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
329
            else:
330
                self.mem_fraction_static = 0.88
331

332
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
333
            # Multimodal models need more memory for the image processor
334
335
336
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
337
338
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
339

340
341
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
342
343
344
345
346
347
348
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
349
            else:
350
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
351

352
353
354
355
356
357
358
359
360
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

361
        # Set kernel backends for hpu device
362
363
364
365
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
366
        # Set kernel backends
367
368
369
370
371
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

372
        if self.sampling_backend is None:
373
374
375
376
377
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
378
            logger.warning(
379
380
381
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
382

383
384
385
386
387
388
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

Lianmin Zheng's avatar
Lianmin Zheng committed
389
390
391
392
393
394
395
396
397
398
399
400
        if self.attention_backend == "flashmla":
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

401
402
403
404
405
406
407
408
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

409
410
411
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
412

413
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
414
        if self.enable_dp_attention:
415
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
416
417
418
419
420
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
421
            logger.warning(
422
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
423
            )
424

425
426
427
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
428
            ), "Please enable dp attention when setting enable_dp_lm_head. "
429

430
431
432
433
434
435
436
        # MoE kernel
        if self.enable_flashinfer_moe:
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"

437
438
        # DeepEP MoE
        if self.enable_deepep_moe:
439
440
441
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
442
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
443
            logger.warning(
444
445
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
446

447
448
449
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
450
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
451
452
453
454
455
456
457
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
458
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
459
460
            )

461
462
463
        if self.enable_eplb:
            assert self.enable_ep_moe or self.enable_deepep_moe

464
465
466
467
468
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

469
        if self.expert_distribution_recorder_buffer_size is None:
470
471
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
472
473
474
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
475
476
477
478
479
480
481
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

482
        # Speculative Decoding
483
484
485
486
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
487
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
488
            if self.max_running_requests is None:
489
                self.max_running_requests = 48
490
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
491
            logger.warning(
492
                "Overlap scheduler is disabled because of using "
493
                "eagle speculative decoding."
494
            )
495
496
497
498
499
500
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
501

Lianmin Zheng's avatar
Lianmin Zheng committed
502
            model_arch = self.get_hf_config().architectures[0]
503
            if model_arch == "DeepseekV3ForCausalLM":
Hanming Lu's avatar
Hanming Lu committed
504
                # Auto set draft_model_path DeepSeek-V3/R1
505
506
507
508
509
510
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
511

512
513
514
515
516
517
518
519
520
521
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
522
                ) = auto_choose_speculative_params(self)
523

524
525
526
527
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
528
                logger.warning(
529
530
531
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
532

533
            # The token generated from the verify step is counted.
534
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
535
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
536

537
538
539
540
541
542
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

543
        # Model loading
544
545
        if is_remote_url(self.model_path):
            self.load_format = "remote"
546
547
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
548

Byron Hsu's avatar
Byron Hsu committed
549
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
550
551
552
553
554
555
556
557
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
558
            self.disable_radix_cache = True
559
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
560
561
562
563
564
565
566
567
568
569
570
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
571

572
        # Propagate env vars
573
574
575
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
576
577
578
579
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
580

Lianmin Zheng's avatar
Lianmin Zheng committed
581
582
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
583
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
584
585
        parser.add_argument(
            "--model-path",
586
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
587
588
589
590
591
592
593
594
595
596
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
597
598
599
600
601
602
603
604
605
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
606
607
608
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
609
            help="If set, skip init tokenizer and pass input_ids in generate request.",
610
        )
611
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
612
613
614
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
615
616
617
618
619
620
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
621
                "sharded_state",
622
623
                "gguf",
                "bitsandbytes",
624
                "layered",
625
                "remote",
626
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
627
628
629
630
631
632
633
634
635
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
636
            "which is mainly for profiling."
637
638
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
639
640
641
642
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
643
        )
644
645
646
647
648
649
650
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
651
652
653
654
655
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
727
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
728
            "--dtype",
Cody Yu's avatar
Cody Yu committed
729
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
730
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
731
732
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
733
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
734
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
735
736
737
738
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
739
740
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
741
742
743
744
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
745
746
747
748
749
750
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
751
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
752
                "bitsandbytes",
753
                "gguf",
754
                "modelopt",
755
                "modelopt_fp4",
756
                "petit_nvfp4",
757
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
758
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
759
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
760
                "qoq",
761
                "w4afp8",
Ying Sheng's avatar
Ying Sheng committed
762
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
763
764
            help="The quantization method.",
        )
765
766
767
768
769
770
771
772
773
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
774
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
775
            "--kv-cache-dtype",
776
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
777
778
779
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
780
        )
781

782
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
783
784
785
786
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
787
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
788
        )
789
790
791
792
793
794
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
795
796
797
798
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
799
800
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
801
        )
802
803
804
805
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
806
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
807
808
809
810
811
812
813
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
814
        parser.add_argument(
815
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
816
            type=str,
817
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
818
            choices=["lpm", "random", "fcfs", "dfs-weight"],
819
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
820
        )
821
822
823
824
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
825
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
826
        )
827
828
829
830
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
831
            help="How many GBs of RAM to reserve for CPU offloading.",
832
        )
833
834
835
836
837
838
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
839
840
841
842
843
844
845
846
847
848
849
850
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
851
852
853
854
855
856
857
858
859
860
861
862
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
863

Lianmin Zheng's avatar
Lianmin Zheng committed
864
865
866
867
868
869
870
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
871
        parser.add_argument(
872
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
873
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
874
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
875
            default=ServerArgs.tp_size,
876
            help="The tensor parallelism size.",
877
        )
878
879
880
881
882
883
884
885
886
887
888
889
890
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
891
892
893
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
894
            default=ServerArgs.stream_interval,
895
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
896
        )
897
898
899
900
901
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
902
903
904
905
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
906
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
907
        )
908
909
910
911
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
912
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
913
        )
914
915
916
917
918
919
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
920
921
922
923
924
925
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
926
927
928
929
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
930
            help="Model download directory for huggingface.",
931
        )
932
933
934
935
936
937
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
938
939
940
941
942
943
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
944
945
946
947
948
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
949
950

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
951
952
953
954
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
955
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
956
        )
957
        parser.add_argument(
958
959
960
961
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
962
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
963
        parser.add_argument(
964
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
965
            action="store_true",
966
967
968
969
970
971
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
972
973
974
975
976
977
978
979
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
980
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
981
982
983
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
984
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
985
        )
986
987
988
989
990
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
991
992
993
994
995
996
997
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1025
1026
1027
1028
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1029
            help="The log interval of decode batch.",
1030
        )
1031
1032
1033
1034
1035
1036
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1037
1038
1039
1040
1041
1042
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1043

1044
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1045
1046
1047
1048
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1049
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1050
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1069
        parser.add_argument(
1070
            "--file-storage-path",
1071
            type=str,
1072
            default=ServerArgs.file_storage_path,
1073
1074
            help="The path of the file storage in backend.",
        )
1075
1076
1077
1078
1079
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1080
1081
1082
1083
1084
1085
1086
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1087
1088
1089
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1090
1091
1092
1093
1094
1095
1096
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1097
                "qwen3_coder",
Atream's avatar
Atream committed
1098
            ],
1099
            default=ServerArgs.tool_call_parser,
1100
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', and 'qwen3_coder'.",
1101
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1102

1103
1104
        # Data parallelism
        parser.add_argument(
1105
            "--data-parallel-size",
1106
1107
1108
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1109
            help="The data parallelism size.",
1110
1111
1112
1113
1114
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1115
            help="The load balancing strategy for data parallelism.",
1116
1117
1118
1119
1120
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
1121

1122
        # Multi-node distributed serving
1123
        parser.add_argument(
1124
            "--dist-init-addr",
1125
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1126
            type=str,
1127
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1128
1129
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1130
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1131
        )
1132
1133
1134
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1135

Lianmin Zheng's avatar
Lianmin Zheng committed
1136
1137
1138
1139
1140
1141
1142
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1143
1144
1145
1146
1147
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1148

1149
        # LoRA
1150
1151
1152
1153
1154
1155
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1156
1157
1158
1159
1160
1161
1162
1163
1164
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1165
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1166
1167
            nargs="*",
            default=None,
1168
1169
1170
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1171
        )
1172
1173
1174
1175
1176
1177
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1178
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1179
1180
1181
1182
1183
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1184
1185
1186
1187
1188
1189
1190
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1191
1192
1193
        )

        # Kernel backend
1194
1195
1196
        parser.add_argument(
            "--attention-backend",
            type=str,
1197
            choices=[
1198
                "aiter",
1199
                "cutlass_mla",
1200
                "fa3",
1201
                "flashinfer",
1202
                "flashmla",
1203
                "intel_amx",
1204
                "torch_native",
1205
                "ascend",
1206
                "triton",
1207
            ],
1208
1209
1210
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1211
1212
1213
1214
1215
1216
1217
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1218
1219
1220
        parser.add_argument(
            "--grammar-backend",
            type=str,
1221
            choices=["xgrammar", "outlines", "llguidance", "none"],
1222
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1223
            help="Choose the backend for grammar-guided decoding.",
1224
        )
1225
1226
1227
1228
1229
1230
1231
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1232

1233
1234
1235
1236
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1237
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1254
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1255
1256
            default=ServerArgs.speculative_eagle_topk,
        )
1257
1258
1259
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1260
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1261
1262
            default=ServerArgs.speculative_num_draft_tokens,
        )
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1275
1276
1277
1278
1279
1280
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1295
1296
1297
1298
1299
        parser.add_argument(
            "--enable-flashinfer-moe",
            action="store_true",
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP with --enable-ep-moe",
        )
1300
1301
1302
1303
1304
        parser.add_argument(
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1387

Lianmin Zheng's avatar
Lianmin Zheng committed
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
            choices=["file"],  # todo, mooncake
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )

1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1465
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1466
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1467
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1468
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1469
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1470
        )
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1483
1484
1485
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1486
            help="Disable cuda graph.",
1487
        )
1488
        parser.add_argument(
1489
1490
            "--disable-cuda-graph-padding",
            action="store_true",
1491
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1492
        )
1493
1494
1495
1496
1497
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1498
1499
1500
1501
1502
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1503
1504
1505
1506
1507
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1508
        parser.add_argument(
1509
            "--disable-outlines-disk-cache",
1510
            action="store_true",
1511
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1512
        )
1513
1514
1515
1516
1517
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1518
1519
1520
1521
1522
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1523
        parser.add_argument(
1524
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1525
            action="store_true",
1526
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1527
        )
1528
1529
1530
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1531
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1532
        )
Ke Bao's avatar
Ke Bao committed
1533
1534
1535
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1536
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1537
        )
1538
1539
1540
1541
1542
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1543
1544
1545
1546
1547
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1548
1549
1550
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1551
1552
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1553
        parser.add_argument(
1554
            "--torch-compile-max-bs",
1555
            type=int,
1556
            default=ServerArgs.torch_compile_max_bs,
1557
1558
            help="Set the maximum batch size when using torch compile.",
        )
1559
1560
1561
1562
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1563
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1564
        )
1565
1566
1567
1568
1569
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1570
        parser.add_argument(
1571
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1572
            action="store_true",
1573
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1574
        )
1575
        parser.add_argument(
1576
            "--triton-attention-reduce-in-fp32",
1577
            action="store_true",
1578
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1579
            "This only affects Triton attention kernels.",
1580
        )
1581
1582
1583
1584
1585
1586
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1587
1588
1589
1590
1591
1592
1593
1594
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1595
1596
1597
1598
1599
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1600
1601
1602
1603
1604
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1605
1606
1607
1608
1609
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1610
1611
1612
1613
1614
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1615
        parser.add_argument(
1616
            "--flashinfer-mla-disable-ragged",
1617
            action="store_true",
1618
            help="Not using ragged prefill wrapper when running flashinfer mla",
1619
        )
1620
        parser.add_argument(
1621
1622
1623
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1624
        )
1625
1626
1627
1628
1629
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1630
1631
1632
1633
1634
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1635
1636
1637
1638
1639
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1640
1641
1642
1643
1644
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1665
1666
1667
1668
1669
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1670

Lianmin Zheng's avatar
Lianmin Zheng committed
1671
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1672
1673
1674
1675
1676
1677
1678
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1679
1680
1681
1682
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1683
            choices=["mooncake", "nixl", "ascend"],
1684
1685
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1686
1687
1688
1689
1690
1691
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1710
1711
1712
1713
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1714
1715
1716
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1717
        )
1718
1719
1720
1721
1722
1723
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1724
1725
1726
1727
1728
1729
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1730
1731

        # Custom weight loader
1732
1733
1734
1735
1736
1737
1738
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1739
1740
1741
1742
1743
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1744
1745

        # For PD-Multiplexing
1746
1747
1748
1749
1750
1751
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1752
1753
1754
1755
1756
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1757

Lianmin Zheng's avatar
Lianmin Zheng committed
1758
1759
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1760
        args.tp_size = args.tensor_parallel_size
1761
        args.pp_size = args.pipeline_parallel_size
1762
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1763
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1764
1765
1766
1767
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1768
        if is_valid_ipv6_address(self.host):
1769
1770
1771
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1772

Lianmin Zheng's avatar
Lianmin Zheng committed
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1784
    def check_server_args(self):
1785
        # Check parallel size constraints
1786
        assert (
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1797
        assert not (
1798
1799
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1800

1801
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1802
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1803

Lianmin Zheng's avatar
Lianmin Zheng committed
1804
1805
1806
1807
1808
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

1809
1810
1811
1812
1813
1814
        # Check model architecture
        model_arch = self.get_hf_config().architectures[0]
        if "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"

        # Check LoRA
1815
1816
        self.check_lora_server_args()

1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
        assert (
            self.chunked_prefill_size % self.page_size == 0
        ), "chunked_prefill_size must be divisible by page_size"

1828
    def check_lora_server_args(self):
1829
1830
1831
1832
1833
1834
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and radix attention is in progress"

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
                logger.info(
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
1855
                        self.lora_paths[name] = LoRARef(lora_name=name, lora_path=path)
1856
                    else:
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
                        self.lora_paths[lora_path] = LoRARef(
                            lora_name=lora_path,
                            lora_path=lora_path,
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
                    k: LoRARef(lora_name=k, lora_path=v)
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
1887

Lianmin Zheng's avatar
Lianmin Zheng committed
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )
        logger.warning(
            f"Multimodal model: Dynamically adjusted --mem-fraction-static "
            f"from: {original_server_arg_mem_fraction:.3f} to: {self.mem_fraction_static:.3f}."
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1938

Lianmin Zheng's avatar
Lianmin Zheng committed
1939
def prepare_server_args(argv: List[str]) -> ServerArgs:
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1952
    raw_args = parser.parse_args(argv)
1953
1954
1955
1956
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1957
1958
1959
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1960
1961
@dataclasses.dataclass
class PortArgs:
1962
1963
1964
1965
1966
1967
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1968

1969
1970
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1971

1972
1973
1974
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1975
1976
1977
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

1978
    @staticmethod
1979
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1980
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
1981
            nccl_port = server_args.port + random.randint(100, 1000)
1982
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
1983
                if is_port_available(nccl_port):
1984
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
1985
1986
                if nccl_port < 60000:
                    nccl_port += 42
1987
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1988
                    nccl_port -= 43
1989
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
1990
            nccl_port = server_args.nccl_port
1991

1992
1993
1994
1995
1996
1997
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
1998
                nccl_port=nccl_port,
1999
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2000
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2001
2002
2003
2004
2005
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2006
2007
2008
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2009
2010
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2011

2012
2013
2014
2015
2016
2017
2018
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
2019
                # TokenizerManager to DataParallelController
2020
                scheduler_input_port = port_base + 4
2021
            else:
2022
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2023
2024
2025
2026
2027

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2028
                nccl_port=nccl_port,
2029
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
2030
                metrics_ipc_name=f"tcp://{dist_init_host}:{port_base + 3}",
2031
            )
2032

2033
2034
2035
2036
2037
2038
2039
2040
2041
2042

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2053
2054


2055
def auto_choose_speculative_params(self: ServerArgs):
2056
2057
2058
2059
2060
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2061
    hf_config = self.get_hf_config()
2062
2063
    arch = hf_config.architectures[0]

2064
2065
2066
2067
2068
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2069
        return (3, 1, 4)
2070
2071
2072
2073
2074
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)