"vscode:/vscode.git/clone" did not exist on "4289c74359ad7cac0d4350c22e6af3f92c5f091c"
server_args.py 85.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import sys
23
import tempfile
24
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
25

26
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
27
from sglang.srt.layers.utils import is_sm100_supported
28
from sglang.srt.lora.lora_registry import LoRARef
Xihuai Wang's avatar
Xihuai Wang committed
29
from sglang.srt.reasoning_parser import ReasoningParser
30
from sglang.srt.utils import (
31
32
    LORA_TARGET_ALL_MODULES,
    SUPPORTED_LORA_TARGET_MODULES,
Vincent's avatar
Vincent committed
33
    configure_ipv6,
34
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
35
    get_device_memory_capacity,
36
    is_flashinfer_available,
HAI's avatar
HAI committed
37
    is_hip,
38
    is_port_available,
39
    is_remote_url,
40
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
41
    nullable_str,
42
)
43

44
45
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
46
47
48

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
49
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
50
51
52
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
53
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    load_format: str = "auto"
55
    model_loader_extra_config: str = "{}"
56
    trust_remote_code: bool = False
57
    context_length: Optional[int] = None
58
    is_embedding: bool = False
59
    enable_multimodal: Optional[bool] = None
60
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    model_impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
62

Lianmin Zheng's avatar
Lianmin Zheng committed
63
    # HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
64
65
    host: str = "127.0.0.1"
    port: int = 30000
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67
    skip_server_warmup: bool = False
    warmups: Optional[str] = None
68
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
69

Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
72
73
74
75
    # Quantization and data type
    dtype: str = "auto"
    quantization: Optional[str] = None
    quantization_param_path: Optional[str] = None
    kv_cache_dtype: str = "auto"

Lianmin Zheng's avatar
Lianmin Zheng committed
76
    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
77
    mem_fraction_static: Optional[float] = None
78
    max_running_requests: Optional[int] = None
79
    max_queued_requests: Optional[int] = sys.maxsize
80
    max_total_tokens: Optional[int] = None
81
    chunked_prefill_size: Optional[int] = None
82
    max_prefill_tokens: int = 16384
83
    schedule_policy: str = "fcfs"
84
    schedule_conservativeness: float = 1.0
85
    cpu_offload_gb: int = 0
86
    page_size: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
87
88
89
    hybrid_kvcache_ratio: Optional[float] = None
    swa_full_tokens_ratio: float = 0.8
    disable_hybrid_swa_memory: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
90

Lianmin Zheng's avatar
Lianmin Zheng committed
91
92
    # Runtime options
    device: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
93
    tp_size: int = 1
94
95
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
96
    stream_interval: int = 1
97
    stream_output: bool = False
98
    random_seed: Optional[int] = None
99
    constrained_json_whitespace_pattern: Optional[str] = None
100
    watchdog_timeout: float = 300
101
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
102
    download_dir: Optional[str] = None
103
    base_gpu_id: int = 0
104
    gpu_id_step: int = 1
105
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
106
107
108

    # Logging
    log_level: str = "info"
109
    log_level_http: Optional[str] = None
110
    log_requests: bool = False
111
    log_requests_level: int = 0
112
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
113
    show_time_cost: bool = False
114
    enable_metrics: bool = False
115
    enable_metrics_for_all_schedulers: bool = False
116
117
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    bucket_e2e_request_latency: Optional[List[float]] = None
119
    collect_tokens_histogram: bool = False
120
    decode_log_interval: int = 40
121
    enable_request_time_stats_logging: bool = False
122
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
123

124
    # API related
125
    api_key: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
126
127
128
    served_model_name: Optional[str] = None
    chat_template: Optional[str] = None
    completion_template: Optional[str] = None
129
    file_storage_path: str = "sglang_storage"
130
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
131
    reasoning_parser: Optional[str] = None
132
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
133

134
135
136
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
137

138
    # Multi-node distributed serving
139
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
140
    nnodes: int = 1
141
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
142
143
144

    # Model override args in JSON
    json_model_override_args: str = "{}"
145
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
146

147
    # LoRA
148
    enable_lora: Optional[bool] = None
149
    max_lora_rank: Optional[int] = None
150
    lora_target_modules: Optional[Union[set[str], List[str]]] = None
151
    lora_paths: Optional[Union[dict[str, str], dict[str, LoRARef], List[str]]] = None
152
    max_loras_per_batch: int = 8
153
    lora_backend: str = "triton"
154
155

    # Kernel backend
156
    attention_backend: Optional[str] = None
157
158
    decode_attention_backend: Optional[str] = None
    prefill_attention_backend: Optional[str] = None
159
    sampling_backend: Optional[str] = None
160
    grammar_backend: Optional[str] = None
161
    mm_attention_backend: Optional[str] = None
162

163
164
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
165
    speculative_draft_model_path: Optional[str] = None
166
167
168
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
169
170
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
171
    speculative_token_map: Optional[str] = None
172

173
174
175
176
    # Expert parallelism
    ep_size: int = 1
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
177
178
    enable_flashinfer_cutlass_moe: bool = False
    enable_flashinfer_trtllm_moe: bool = False
179
    enable_flashinfer_allreduce_fusion: bool = False
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

Lianmin Zheng's avatar
Lianmin Zheng committed
196
197
198
199
200
201
202
203
    # Hierarchical cache
    enable_hierarchical_cache: bool = False
    hicache_ratio: float = 2.0
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
    hicache_io_backend: str = ""
    hicache_storage_backend: Optional[str] = None

204
205
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
206
    ds_channel_config_path: Optional[str] = None
207
208
209
210
211
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

212
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
213
    disable_radix_cache: bool = False
214
215
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
216
    disable_cuda_graph: bool = False
217
    disable_cuda_graph_padding: bool = False
218
    enable_profile_cuda_graph: bool = False
219
    enable_cudagraph_gc: bool = False
220
    enable_nccl_nvls: bool = False
221
    enable_tokenizer_batch_encode: bool = False
222
    disable_outlines_disk_cache: bool = False
223
    disable_custom_all_reduce: bool = False
224
    enable_mscclpp: bool = False
225
    disable_overlap_schedule: bool = False
226
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
227
    enable_dp_attention: bool = False
228
    enable_dp_lm_head: bool = False
229
    enable_two_batch_overlap: bool = False
230
    enable_torch_compile: bool = False
231
    torch_compile_max_bs: int = 32
232
    torchao_config: str = ""
233
    enable_nan_detection: bool = False
234
    enable_p2p_check: bool = False
235
    triton_attention_reduce_in_fp32: bool = False
236
    triton_attention_num_kv_splits: int = 8
237
    num_continuous_decode_steps: int = 1
238
    delete_ckpt_after_loading: bool = False
239
    enable_memory_saver: bool = False
240
    allow_auto_truncate: bool = False
241
    enable_custom_logit_processor: bool = False
242
    flashinfer_mla_disable_ragged: bool = False
243
    disable_shared_experts_fusion: bool = False
244
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
245
    disable_fast_image_processor: bool = False
246
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
247
    enable_triton_kernel_moe: bool = False
248
249
250
251
252

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
253
    debug_tensor_dump_prefill_only: bool = False
254

Lianmin Zheng's avatar
Lianmin Zheng committed
255
    # PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
Byron Hsu's avatar
Byron Hsu committed
256
    disaggregation_mode: str = "null"
257
    disaggregation_transfer_backend: str = "mooncake"
258
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
259
260
261
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
262
    disaggregation_ib_device: Optional[str] = None
263
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
264
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
265

266
267
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
268
    weight_loader_disable_mmap: bool = False
269

270
271
272
273
    # For PD-Multiplexing
    enable_pdmux: bool = False
    sm_group_num: int = 3

Lianmin Zheng's avatar
Lianmin Zheng committed
274
    def __post_init__(self):
275
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
276
277
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
278
279
        if self.served_model_name is None:
            self.served_model_name = self.model_path
280
281
        if self.device is None:
            self.device = get_device()
282
283
284
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
285
        gpu_mem = get_device_memory_capacity(self.device)
286

287
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
288
        if self.mem_fraction_static is None:
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
317
                else:
318
319
320
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

321
                if self.speculative_algorithm is not None:
322
323
324
325
326
327
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
328
            else:
329
                self.mem_fraction_static = 0.88
330

331
            # Lazy init to avoid circular import
Lianmin Zheng's avatar
Lianmin Zheng committed
332
            # Multimodal models need more memory for the image processor
333
334
335
            from sglang.srt.configs.model_config import ModelConfig

            model_config = ModelConfig.from_server_args(self)
Lianmin Zheng's avatar
Lianmin Zheng committed
336
337
            if model_config.is_multimodal:
                self.adjust_mem_fraction_for_vlm(model_config)
338

339
340
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
341
342
343
344
345
346
347
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
348
            else:
349
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
350

351
352
353
354
355
356
357
358
359
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

360
        # Set kernel backends for hpu device
361
362
363
364
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
365
        # Set kernel backends
366
367
368
369
370
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

371
        if self.sampling_backend is None:
372
373
374
375
376
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
377
            logger.warning(
378
379
380
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
381

382
383
384
385
386
387
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

388
389
390
391
        if (
            self.attention_backend == "flashmla"
            or self.decode_attention_backend == "flashmla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393
394
395
396
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64

397
398
399
400
        if (
            self.attention_backend == "cutlass_mla"
            or self.decode_attention_backend == "cutlass_mla"
        ):
Lianmin Zheng's avatar
Lianmin Zheng committed
401
402
403
404
405
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
        if self.attention_backend == "trtllm_mla":
            if not is_sm100_supported():
                raise ValueError(
                    "TRTLLM MLA backend is only supported on Blackwell GPUs (SM100). Please use a different backend."
                )

            if self.page_size not in [32, 64]:
                logger.warning(
                    f"TensorRT-LLM MLA only supports page_size of 32 or 64, changing page_size from {self.page_size} to 64."
                )
                self.page_size = 64
            if self.speculative_algorithm is not None:
                raise ValueError(
                    "trtllm_mla backend does not support speculative decoding yet."
                )

422
423
424
425
426
427
428
429
        # Set page size
        if self.page_size is None:
            self.page_size = 1

        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

430
431
432
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
433

434
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
435
        if self.enable_dp_attention:
436
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
437
438
439
440
441
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
442
            logger.warning(
443
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
444
            )
445

446
447
448
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
449
            ), "Please enable dp attention when setting enable_dp_lm_head. "
450

451
        # MoE kernel
452
        if self.enable_flashinfer_cutlass_moe:
453
454
455
456
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"
457
458
459
460
461
            if self.enable_ep_moe:
                self.ep_size = self.tp_size
                logger.warning(
                    f"Flashinfer cutlass MoE and EP MoE are enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
                )
462

463
464
        # DeepEP MoE
        if self.enable_deepep_moe:
465
466
467
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
468
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
469
            logger.warning(
470
471
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
472

473
474
475
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
476
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
477
478
479
480
481
482
483
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
484
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
485
486
            )

487
488
489
        if self.enable_eplb:
            assert self.enable_ep_moe or self.enable_deepep_moe

490
491
492
493
494
        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

495
        if self.expert_distribution_recorder_buffer_size is None:
496
497
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
498
499
500
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

Lianmin Zheng's avatar
Lianmin Zheng committed
501
502
503
504
505
506
507
        # Pipeline parallelism
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

508
        # Speculative Decoding
509
510
511
512
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
513
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
514
            if self.max_running_requests is None:
515
                self.max_running_requests = 48
516
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
517
            logger.warning(
518
                "Overlap scheduler is disabled because of using "
519
                "eagle speculative decoding."
520
            )
521
522
523
524
525
526
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
527

Lianmin Zheng's avatar
Lianmin Zheng committed
528
            model_arch = self.get_hf_config().architectures[0]
Yuxuan Zhang's avatar
Yuxuan Zhang committed
529
            if model_arch in ["DeepseekV3ForCausalLM", "Glm4MoeForCausalLM"]:
Hanming Lu's avatar
Hanming Lu committed
530
                # Auto set draft_model_path DeepSeek-V3/R1
531
532
533
534
535
536
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
537

538
539
540
541
542
543
544
545
546
547
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
548
                ) = auto_choose_speculative_params(self)
549

550
551
552
553
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
554
                logger.warning(
555
556
557
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
558

559
            # The token generated from the verify step is counted.
560
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
561
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
562

563
564
565
566
567
568
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

569
        # Model loading
570
571
        if is_remote_url(self.model_path):
            self.load_format = "remote"
572
573
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []
574

Byron Hsu's avatar
Byron Hsu committed
575
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
576
577
578
579
580
581
582
583
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
584
            self.disable_radix_cache = True
585
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
586
587
588
589
590
591
592
593
594
595
596
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
597

598
        # Propagate env vars
599
600
601
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
602
603
604
605
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
606

Lianmin Zheng's avatar
Lianmin Zheng committed
607
608
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
Lianmin Zheng's avatar
Lianmin Zheng committed
609
        # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
610
611
        parser.add_argument(
            "--model-path",
612
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
613
614
615
616
617
618
619
620
621
622
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
623
624
625
626
627
628
629
630
631
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
632
633
634
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
635
            help="If set, skip init tokenizer and pass input_ids in generate request.",
636
        )
637
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
638
639
640
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
641
642
643
644
645
646
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
647
                "sharded_state",
648
649
                "gguf",
                "bitsandbytes",
650
                "layered",
651
                "remote",
652
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
653
654
655
656
657
658
659
660
661
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
662
            "which is mainly for profiling."
663
664
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
665
666
667
668
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
669
        )
670
671
672
673
674
675
676
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
677
678
679
680
681
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
        parser.add_argument(
            "--model-impl",
            type=str,
            default=ServerArgs.model_impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )

        # HTTP server
        parser.add_argument(
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
        )
        parser.add_argument(
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
        )
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )

        # Quantization and data type
Lianmin Zheng's avatar
Lianmin Zheng committed
753
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
754
            "--dtype",
Cody Yu's avatar
Cody Yu committed
755
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
756
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
757
758
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
759
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
760
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
761
762
763
764
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
765
766
            '* "float32" for FP32 precision.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
767
768
769
770
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
771
772
773
774
775
776
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
777
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
778
                "bitsandbytes",
779
                "gguf",
780
                "modelopt",
781
                "modelopt_fp4",
782
                "petit_nvfp4",
783
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
784
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
785
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
786
                "qoq",
787
                "w4afp8",
Ying Sheng's avatar
Ying Sheng committed
788
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
789
790
            help="The quantization method.",
        )
791
792
793
794
795
796
797
798
799
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
800
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
801
            "--kv-cache-dtype",
802
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
803
804
805
            default=ServerArgs.kv_cache_dtype,
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
806
        )
807

808
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
809
810
811
812
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
813
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
814
        )
815
816
817
818
819
820
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
821
822
823
824
825
826
        parser.add_argument(
            "--max-queued-requests",
            type=int,
            default=ServerArgs.max_queued_requests,
            help="The maximum number of queued requests. This option is ignored when using disaggregation-mode.",
        )
827
828
829
830
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
831
832
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
833
        )
834
835
836
837
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
838
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
839
840
841
842
843
844
845
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
846
        parser.add_argument(
847
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
848
            type=str,
849
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
850
            choices=["lpm", "random", "fcfs", "dfs-weight"],
851
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
852
        )
853
854
855
856
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
857
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
858
        )
859
860
861
862
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
863
            help="How many GBs of RAM to reserve for CPU offloading.",
864
        )
865
866
867
868
869
870
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
871
872
873
874
875
876
877
878
879
880
881
882
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
883
884
885
886
887
888
889
890
891
892
893
894
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
895

Lianmin Zheng's avatar
Lianmin Zheng committed
896
897
898
899
900
901
902
        # Runtime options
        parser.add_argument(
            "--device",
            type=str,
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
903
        parser.add_argument(
904
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
905
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
906
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
907
            default=ServerArgs.tp_size,
908
            help="The tensor parallelism size.",
909
        )
910
911
912
913
914
915
916
917
918
919
920
921
922
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
923
924
925
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
926
            default=ServerArgs.stream_interval,
927
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
928
        )
929
930
931
932
933
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
934
935
936
937
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
938
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
939
        )
940
941
942
943
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
Lianmin Zheng's avatar
Lianmin Zheng committed
944
            help="(outlines backend only) Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
945
        )
946
947
948
949
950
951
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
952
953
954
955
956
957
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
958
959
960
961
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
962
            help="Model download directory for huggingface.",
963
        )
964
965
966
967
968
969
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
970
971
972
973
974
975
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
976
977
978
979
980
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
981
982

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
983
984
985
986
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
987
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
988
        )
989
        parser.add_argument(
990
991
992
993
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
994
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
995
        parser.add_argument(
996
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
997
            action="store_true",
998
999
1000
1001
1002
1003
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
1004
1005
1006
1007
1008
1009
1010
1011
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1012
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1013
1014
1015
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1016
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1017
        )
1018
1019
1020
1021
1022
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
1023
1024
1025
1026
1027
1028
1029
        parser.add_argument(
            "--enable-metrics-for-all-schedulers",
            action="store_true",
            help="Enable --enable-metrics-for-all-schedulers when you want schedulers on all TP ranks (not just TP 0) "
            "to record request metrics separately. This is especially useful when dp_attention is enabled, as "
            "otherwise all metrics appear to come from TP 0.",
        )
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1057
1058
1059
1060
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1061
            help="The log interval of decode batch.",
1062
        )
1063
1064
1065
1066
1067
1068
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1069
1070
1071
1072
1073
1074
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1075

1076
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1077
1078
1079
1080
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1081
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1082
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
1101
        parser.add_argument(
1102
            "--file-storage-path",
1103
            type=str,
1104
            default=ServerArgs.file_storage_path,
1105
1106
            help="The path of the file storage in backend.",
        )
1107
1108
1109
1110
1111
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1112
1113
1114
1115
1116
1117
1118
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1119
1120
1121
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1122
1123
1124
1125
1126
1127
1128
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
1129
                "qwen3_coder",
Yuxuan Zhang's avatar
Yuxuan Zhang committed
1130
                "glm45",
Chang Su's avatar
Chang Su committed
1131
                "step3",
Atream's avatar
Atream committed
1132
            ],
1133
            default=ServerArgs.tool_call_parser,
Chang Su's avatar
Chang Su committed
1134
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', 'kimi_k2', 'qwen3_coder', 'glm45', and 'step3'.",
1135
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1136

1137
1138
        # Data parallelism
        parser.add_argument(
1139
            "--data-parallel-size",
1140
1141
1142
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1143
            help="The data parallelism size.",
1144
1145
1146
1147
1148
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1149
            help="The load balancing strategy for data parallelism.",
1150
1151
1152
1153
1154
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
1155

1156
        # Multi-node distributed serving
1157
        parser.add_argument(
1158
            "--dist-init-addr",
1159
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1160
            type=str,
1161
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1162
1163
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1164
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1165
        )
1166
1167
1168
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1169

Lianmin Zheng's avatar
Lianmin Zheng committed
1170
1171
1172
1173
1174
1175
1176
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1177
1178
1179
1180
1181
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1182

1183
        # LoRA
1184
1185
1186
1187
1188
1189
        parser.add_argument(
            "--enable-lora",
            default=ServerArgs.enable_lora,
            action="store_true",
            help="Enable LoRA support for the model. This argument is automatically set to True if `--lora-paths` is provided for backward compatibility.",
        )
1190
1191
1192
1193
1194
1195
1196
1197
1198
        parser.add_argument(
            "--max-lora-rank",
            default=ServerArgs.max_lora_rank,
            type=int,
            help="The maximum rank of LoRA adapters. If not specified, it will be automatically inferred from the adapters provided in --lora-paths.",
        )
        parser.add_argument(
            "--lora-target-modules",
            type=str,
1199
            choices=SUPPORTED_LORA_TARGET_MODULES + [LORA_TARGET_ALL_MODULES],
1200
1201
            nargs="*",
            default=None,
1202
1203
1204
            help="The union set of all target modules where LoRA should be applied. If not specified, "
            "it will be automatically inferred from the adapters provided in --lora-paths. If 'all' is specified, "
            "all supported modules will be targeted.",
1205
        )
1206
1207
1208
1209
1210
1211
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1212
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1213
1214
1215
1216
1217
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1218
1219
1220
1221
1222
1223
1224
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1225
1226
1227
        )

        # Kernel backend
1228
1229
1230
        parser.add_argument(
            "--attention-backend",
            type=str,
1231
            choices=[
1232
                "aiter",
1233
                "cutlass_mla",
1234
                "fa3",
1235
                "flashinfer",
1236
                "flashmla",
1237
                "intel_amx",
1238
                "torch_native",
1239
                "ascend",
1240
                "triton",
1241
                "trtllm_mla",
1242
            ],
1243
1244
1245
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
        parser.add_argument(
            "--decode-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.decode_attention_backend,
            help="Choose the kernels for decode attention layers (have priority over --attention-backend).",
        )

        parser.add_argument(
            "--prefill-attention-backend",
            type=str,
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
            default=ServerArgs.prefill_attention_backend,
            help="Choose the kernels for prefill attention layers (have priority over --attention-backend).",
        )
1275
1276
1277
1278
1279
1280
1281
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1282
1283
1284
        parser.add_argument(
            "--grammar-backend",
            type=str,
1285
            choices=["xgrammar", "outlines", "llguidance", "none"],
1286
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1287
            help="Choose the backend for grammar-guided decoding.",
1288
        )
1289
1290
1291
1292
1293
1294
1295
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )
1296

1297
1298
1299
1300
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1301
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1318
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1319
1320
            default=ServerArgs.speculative_eagle_topk,
        )
1321
1322
1323
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1324
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1325
1326
            default=ServerArgs.speculative_num_draft_tokens,
        )
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1339
1340
1341
1342
1343
1344
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1345
1346
1347
1348
1349

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
Cheng Wan's avatar
Cheng Wan committed
1350
            "--ep",
1351
1352
1353
1354
1355
1356
1357
1358
1359
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1360
        parser.add_argument(
1361
            "--enable-flashinfer-cutlass-moe",
1362
1363
1364
            action="store_true",
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP with --enable-ep-moe",
        )
1365
        parser.add_argument(
1366
1367
1368
1369
1370
            "--enable-flashinfer-trtllm-moe",
            action="store_true",
            help="Enable FlashInfer TRTLLM MoE backend on Blackwell. Supports BlockScale FP8 MoE-EP with --enable-ep-moe",
        )
        parser.add_argument(
1371
1372
1373
1374
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1457

Lianmin Zheng's avatar
Lianmin Zheng committed
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
        # Hierarchical cache
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
        parser.add_argument(
            "--hicache-storage-backend",
            type=str,
1493
            choices=["file", "mooncake", "hf3fs", "nixl"],
Lianmin Zheng's avatar
Lianmin Zheng committed
1494
1495
1496
1497
            default=ServerArgs.hicache_storage_backend,
            help="The storage backend for hierarchical KV cache.",
        )

1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1535
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1536
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1537
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1538
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1539
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1540
        )
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1553
1554
1555
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1556
            help="Disable cuda graph.",
1557
        )
1558
        parser.add_argument(
1559
1560
            "--disable-cuda-graph-padding",
            action="store_true",
1561
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1562
        )
1563
1564
1565
1566
1567
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1568
1569
1570
1571
1572
        parser.add_argument(
            "--enable-cudagraph-gc",
            action="store_true",
            help="Enable garbage collection during CUDA graph capture. If disabled (default), GC is frozen during capture to speed up the process.",
        )
1573
1574
1575
1576
1577
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1578
1579
1580
1581
1582
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1583
        parser.add_argument(
1584
            "--disable-outlines-disk-cache",
1585
            action="store_true",
1586
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1587
        )
1588
1589
1590
1591
1592
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1593
1594
1595
1596
1597
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1598
        parser.add_argument(
1599
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1600
            action="store_true",
1601
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1602
        )
1603
1604
1605
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1606
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1607
        )
Ke Bao's avatar
Ke Bao committed
1608
1609
1610
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1611
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1612
        )
1613
1614
1615
1616
1617
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1618
1619
1620
1621
1622
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1623
1624
1625
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1626
1627
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1628
        parser.add_argument(
1629
            "--torch-compile-max-bs",
1630
            type=int,
1631
            default=ServerArgs.torch_compile_max_bs,
1632
1633
            help="Set the maximum batch size when using torch compile.",
        )
1634
1635
1636
1637
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1638
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1639
        )
1640
1641
1642
1643
1644
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1645
        parser.add_argument(
1646
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1647
            action="store_true",
1648
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1649
        )
1650
        parser.add_argument(
1651
            "--triton-attention-reduce-in-fp32",
1652
            action="store_true",
1653
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1654
            "This only affects Triton attention kernels.",
1655
        )
1656
1657
1658
1659
1660
1661
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1662
1663
1664
1665
1666
1667
1668
1669
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1670
1671
1672
1673
1674
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1675
1676
1677
1678
1679
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1680
1681
1682
1683
1684
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1685
1686
1687
1688
1689
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1690
        parser.add_argument(
1691
            "--flashinfer-mla-disable-ragged",
1692
            action="store_true",
1693
            help="Not using ragged prefill wrapper when running flashinfer mla",
1694
        )
1695
        parser.add_argument(
1696
1697
1698
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1699
        )
1700
1701
1702
1703
1704
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1705
1706
1707
1708
1709
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1710
1711
1712
1713
1714
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1715
1716
1717
1718
1719
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1740
1741
1742
1743
1744
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1745

Lianmin Zheng's avatar
Lianmin Zheng committed
1746
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
1747
1748
1749
1750
1751
1752
1753
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1754
1755
1756
1757
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1758
            choices=["mooncake", "nixl", "ascend"],
1759
1760
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1761
1762
1763
1764
1765
1766
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1785
1786
1787
1788
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1789
1790
1791
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1792
        )
1793
1794
1795
1796
1797
1798
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1799
1800
1801
1802
1803
1804
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1805
1806

        # Custom weight loader
1807
1808
1809
1810
1811
1812
1813
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1814
1815
1816
1817
1818
        parser.add_argument(
            "--enable-pdmux",
            action="store_true",
            help="Enable PD-Multiplexing, PD running on greenctx stream.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1819
1820

        # For PD-Multiplexing
1821
1822
1823
1824
1825
1826
        parser.add_argument(
            "--sm-group-num",
            type=int,
            default=ServerArgs.sm_group_num,
            help="Number of sm partition groups.",
        )
1827
1828
1829
1830
1831
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1832

Lianmin Zheng's avatar
Lianmin Zheng committed
1833
1834
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1835
        args.tp_size = args.tensor_parallel_size
1836
        args.pp_size = args.pipeline_parallel_size
1837
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1838
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1839
1840
1841
1842
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1843
        if is_valid_ipv6_address(self.host):
1844
1845
1846
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1847

Lianmin Zheng's avatar
Lianmin Zheng committed
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
    def get_hf_config(self):
        kwargs = {}
        hf_config = get_config(
            self.model_path,
            trust_remote_code=self.trust_remote_code,
            revision=self.revision,
            model_override_args=json.loads(self.json_model_override_args),
            **kwargs,
        )
        return hf_config

1859
    def check_server_args(self):
1860
        # Check parallel size constraints
1861
        assert (
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1872
        assert not (
1873
1874
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1875

1876
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1877
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1878

Lianmin Zheng's avatar
Lianmin Zheng committed
1879
1880
1881
1882
1883
        assert self.moe_dense_tp_size in {
            1,
            None,
        }, "moe_dense_tp_size only support 1 and None currently"

1884
1885
1886
1887
1888
1889
        # Check model architecture
        model_arch = self.get_hf_config().architectures[0]
        if "Llama4" in model_arch:
            assert self.attention_backend == "fa3", "fa3 is required for Llama4 model"

        # Check LoRA
1890
1891
        self.check_lora_server_args()

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
        # Check speculative decoding
        if self.speculative_algorithm is not None:
            assert (
                not self.enable_mixed_chunk
            ), "enable_mixed_chunk is required for speculative decoding"

        # Check chunked prefill
        assert (
            self.chunked_prefill_size % self.page_size == 0
        ), "chunked_prefill_size must be divisible by page_size"

1903
    def check_lora_server_args(self):
1904
1905
1906
1907
1908
1909
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and radix attention is in progress"

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
        # Enable LoRA if any LoRA paths are provided for backward compatibility.
        if self.lora_paths:
            if self.enable_lora is None:
                self.enable_lora = True
                logger.info(
                    "--enable-lora is set to True because --lora-paths is provided."
                )
            elif self.enable_lora is False:
                logger.warning(
                    "--enable-lora is set to False, any provided lora_paths will be ignored."
                )

        if self.enable_lora:
            # Normalize lora_paths to a dictionary if it is a list.
            if isinstance(self.lora_paths, list):
                lora_paths = self.lora_paths
                self.lora_paths = {}
                for lora_path in lora_paths:
                    if "=" in lora_path:
                        name, path = lora_path.split("=", 1)
1930
                        self.lora_paths[name] = LoRARef(lora_name=name, lora_path=path)
1931
                    else:
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
                        self.lora_paths[lora_path] = LoRARef(
                            lora_name=lora_path,
                            lora_path=lora_path,
                        )
            elif isinstance(self.lora_paths, dict):
                self.lora_paths = {
                    k: LoRARef(lora_name=k, lora_path=v)
                    for k, v in self.lora_paths.items()
                }
            elif self.lora_paths is None:
                self.lora_paths = {}
            else:
                raise ValueError(
                    f"Invalid type for --lora-paths: {type(self.lora_paths)}. "
                    "Expected a list or a dictionary."
                )
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961

            # Expand target modules
            if self.lora_target_modules:
                self.lora_target_modules = set(self.lora_target_modules)
                if "all" in self.lora_target_modules:
                    assert (
                        len(self.lora_target_modules) == 1
                    ), "If 'all' is specified in --lora-target-modules, it should be the only module specified."
                    self.lora_target_modules = set(SUPPORTED_LORA_TARGET_MODULES)

            # Ensure sufficient information is provided for LoRA initialization.
            assert self.lora_paths or (
                self.max_lora_rank and self.lora_target_modules
            ), "When no initial --lora-paths is provided, you need to specify both --max-lora-rank and --lora-target-modules for LoRA initialization."
1962

Lianmin Zheng's avatar
Lianmin Zheng committed
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

    def adjust_mem_fraction_for_vlm(self, model_config):
        vision_config = getattr(model_config.hf_config, "vision_config", None)
        if vision_config is None:
            return

        # roughly reduce the mem_fraction_static base on params of Vit
        original_server_arg_mem_fraction = self.mem_fraction_static
        # a base mem_fraction_static factor for regular Vit
        base_mem_fraction_reduction_ratio = 0.95

        vit_num_layers = getattr(vision_config, "num_hidden_layers", 24)
        vit_hidden_size = getattr(vision_config, "hidden_size", 1024)

        # baseline ViT params (ViT-L/14)
        baseline_vit_layers = 24
        baseline_vit_hidden_size = 1024

        # weight params count
        current_complexity_score = vit_num_layers * (vit_hidden_size**2)
        baseline_complexity_score = baseline_vit_layers * (baseline_vit_hidden_size**2)
        complexity_ratio = (
            current_complexity_score / baseline_complexity_score
            if baseline_complexity_score > 0
            else 1.0
        )

        # every time the complexity grows 100%, adjust final factor for 10%
        sensitivity_scale = 0.1
        dynamic_adjustment_factor = 1.0 - sensitivity_scale * (complexity_ratio - 1.0)
        dynamic_adjustment_factor = max(0.8, min(1.05, dynamic_adjustment_factor))

        final_overall_factor = (
            base_mem_fraction_reduction_ratio * dynamic_adjustment_factor
        )
        self.mem_fraction_static = (
            original_server_arg_mem_fraction * final_overall_factor
        )
        logger.warning(
            f"Multimodal model: Dynamically adjusted --mem-fraction-static "
            f"from: {original_server_arg_mem_fraction:.3f} to: {self.mem_fraction_static:.3f}."
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
2013

Lianmin Zheng's avatar
Lianmin Zheng committed
2014
def prepare_server_args(argv: List[str]) -> ServerArgs:
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
2027
    raw_args = parser.parse_args(argv)
2028
2029
2030
2031
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


2032
2033
2034
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
2035
2036
@dataclasses.dataclass
class PortArgs:
2037
2038
2039
2040
2041
2042
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
2043

2044
2045
    # The port for nccl initialization (torch.dist)
    nccl_port: int
2046

2047
2048
2049
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

2050
2051
2052
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

2053
    @staticmethod
2054
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
2055
        if server_args.nccl_port is None:
Lianmin Zheng's avatar
Lianmin Zheng committed
2056
            nccl_port = server_args.port + random.randint(100, 1000)
2057
            while True:
Lianmin Zheng's avatar
Lianmin Zheng committed
2058
                if is_port_available(nccl_port):
2059
                    break
Lianmin Zheng's avatar
Lianmin Zheng committed
2060
2061
                if nccl_port < 60000:
                    nccl_port += 42
2062
                else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2063
                    nccl_port -= 43
2064
        else:
Lianmin Zheng's avatar
Lianmin Zheng committed
2065
            nccl_port = server_args.nccl_port
2066

2067
2068
2069
2070
2071
2072
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2073
                nccl_port=nccl_port,
2074
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2075
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
2076
2077
2078
2079
2080
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
2081
2082
2083
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
2084
2085
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
2086

2087
2088
2089
2090
2091
2092
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
2093
2094
2095
            detokenizer_port = port_base + 1
            rpc_port = port_base + 2
            metrics_ipc_name = port_base + 3
2096
            if dp_rank is None:
2097
                # TokenizerManager to DataParallelController
2098
                scheduler_input_port = port_base + 4
2099
            else:
2100
                scheduler_input_port = port_base + 4 + 1 + dp_rank
2101
2102
2103
2104

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
2105
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{detokenizer_port}",
Lianmin Zheng's avatar
Lianmin Zheng committed
2106
                nccl_port=nccl_port,
2107
2108
                rpc_ipc_name=f"tcp://{dist_init_host}:{rpc_port}",
                metrics_ipc_name=f"tcp://{dist_init_host}:{metrics_ipc_name}",
2109
            )
2110

2111
2112
2113
2114
2115
2116
2117
2118
2119
2120

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
2131
2132


2133
def auto_choose_speculative_params(self: ServerArgs):
2134
2135
2136
2137
2138
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
Lianmin Zheng's avatar
Lianmin Zheng committed
2139
    hf_config = self.get_hf_config()
2140
2141
    arch = hf_config.architectures[0]

2142
2143
2144
2145
2146
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
2147
        return (3, 1, 4)
2148
2149
2150
2151
2152
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)