server_args.py 61.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
29
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    get_device_memory_capacity,
31
    is_flashinfer_available,
HAI's avatar
HAI committed
32
    is_hip,
33
    is_port_available,
34
    is_remote_url,
35
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
36
    nullable_str,
37
)
38

39
40
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
44
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
45
46
47
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
48
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
49
    load_format: str = "auto"
50
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
51
    dtype: str = "auto"
52
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
53
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
54
    quantization_param_path: Optional[str] = None
55
    context_length: Optional[int] = None
56
    device: Optional[str] = None
57
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
58
    chat_template: Optional[str] = None
59
    completion_template: Optional[str] = None
60
    is_embedding: bool = False
61
    enable_multimodal: Optional[bool] = None
62
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
63

64
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
65
66
67
68
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
69
    mem_fraction_static: Optional[float] = None
70
    max_running_requests: Optional[int] = None
71
    max_total_tokens: Optional[int] = None
72
    chunked_prefill_size: Optional[int] = None
73
    max_prefill_tokens: int = 16384
74
    schedule_policy: str = "fcfs"
75
    schedule_conservativeness: float = 1.0
76
    cpu_offload_gb: int = 0
77
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
78
79
80

    # Other runtime options
    tp_size: int = 1
81
82
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
83
    stream_interval: int = 1
84
    stream_output: bool = False
85
    random_seed: Optional[int] = None
86
    constrained_json_whitespace_pattern: Optional[str] = None
87
    watchdog_timeout: float = 300
88
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
89
    download_dir: Optional[str] = None
90
    base_gpu_id: int = 0
91
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94

    # Logging
    log_level: str = "info"
95
    log_level_http: Optional[str] = None
96
    log_requests: bool = False
97
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
98
    show_time_cost: bool = False
99
    enable_metrics: bool = False
100
101
102
103
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_e2e_request_latency: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
    collect_tokens_histogram: bool = False
104
    decode_log_interval: int = 40
105
    enable_request_time_stats_logging: bool = False
106
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
107

108
    # API related
109
    api_key: Optional[str] = None
110
    file_storage_path: str = "sglang_storage"
111
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
112
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
113

114
115
116
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
117

xiaobochen's avatar
xiaobochen committed
118
119
    # Expert parallelism
    ep_size: int = 1
120

121
    # Multi-node distributed serving
122
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
123
    nnodes: int = 1
124
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
125
126
127

    # Model override args in JSON
    json_model_override_args: str = "{}"
128
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
129

130
131
132
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
133
    lora_backend: str = "triton"
134
135

    # Kernel backend
136
137
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
138
    grammar_backend: Optional[str] = None
139

140
141
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
142
    speculative_draft_model_path: Optional[str] = None
143
144
145
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
146
147
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
148
    speculative_token_map: Optional[str] = None
149
150
151

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
152
    ds_channel_config_path: Optional[str] = None
153
154
155
156
157
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

158
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
159
    disable_radix_cache: bool = False
160
    disable_cuda_graph: bool = False
161
    disable_cuda_graph_padding: bool = False
162
    enable_nccl_nvls: bool = False
163
    enable_tokenizer_batch_encode: bool = False
164
    disable_outlines_disk_cache: bool = False
165
    disable_custom_all_reduce: bool = False
166
    disable_overlap_schedule: bool = False
167
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
168
    enable_dp_attention: bool = False
169
    enable_dp_lm_head: bool = False
xiaobochen's avatar
xiaobochen committed
170
    enable_ep_moe: bool = False
171
    enable_deepep_moe: bool = False
172
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
173
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic"]] = None
174
175
176
177
178
    init_expert_location: str = "trivial"
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
179
    deepep_config: Optional[str] = None
180
    enable_torch_compile: bool = False
181
    torch_compile_max_bs: int = 32
182
    cuda_graph_max_bs: Optional[int] = None
183
    cuda_graph_bs: Optional[List[int]] = None
184
    torchao_config: str = ""
185
    enable_nan_detection: bool = False
186
    enable_p2p_check: bool = False
187
    triton_attention_reduce_in_fp32: bool = False
188
    triton_attention_num_kv_splits: int = 8
189
    num_continuous_decode_steps: int = 1
190
    delete_ckpt_after_loading: bool = False
191
    enable_memory_saver: bool = False
192
    allow_auto_truncate: bool = False
193
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
194
    tool_call_parser: Optional[str] = None
195
    enable_hierarchical_cache: bool = False
196
    hicache_ratio: float = 2.0
Zhiqiang Xie's avatar
Zhiqiang Xie committed
197
198
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
199
    flashinfer_mla_disable_ragged: bool = False
200
    warmups: Optional[str] = None
201
    moe_dense_tp_size: Optional[int] = None
202
    n_share_experts_fusion: int = 0
203
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
204
    disable_fast_image_processor: bool = False
205
    mm_attention_backend: Optional[str] = None
206
207
208
209
210

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
211

Byron Hsu's avatar
Byron Hsu committed
212
213
214
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998
215
    disaggregation_transfer_backend: str = "mooncake"
216
    disaggregation_ib_device: Optional[str] = None
217
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
218

Lianmin Zheng's avatar
Lianmin Zheng committed
219
    def __post_init__(self):
220
221
222
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
223
            logger.warning(
224
225
226
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

227
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
228
229
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
230

231
232
233
        if self.device is None:
            self.device = get_device()

234
235
236
        if self.served_model_name is None:
            self.served_model_name = self.model_path

237
238
239
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
240
        gpu_mem = get_device_memory_capacity(self.device)
241
242

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
243
        if self.mem_fraction_static is None:
244
            parallel_size = self.tp_size * self.pp_size
Yi Liu's avatar
Yi Liu committed
245
            if gpu_mem is not None and gpu_mem <= 81920:
246
247
248
249
250
251
252
253
254
255
                if parallel_size >= 16:
                    self.mem_fraction_static = 0.79
                elif parallel_size >= 8:
                    self.mem_fraction_static = 0.81
                elif parallel_size >= 4:
                    self.mem_fraction_static = 0.85
                elif parallel_size >= 2:
                    self.mem_fraction_static = 0.87
                else:
                    self.mem_fraction_static = 0.88
Ying Sheng's avatar
Ying Sheng committed
256
            else:
257
                self.mem_fraction_static = 0.88
Yi Liu's avatar
Yi Liu committed
258
            if gpu_mem is not None and gpu_mem > 96 * 1024:
259
260
261
262
                mem_fraction = self.mem_fraction_static
                self.mem_fraction_static = min(
                    mem_fraction + 48 * 1024 * (1 - mem_fraction) / gpu_mem,
                    (gpu_mem - 1024 * 18)
263
                    / gpu_mem,  # 15 GB + additional 3GB for cuda graph
264
                )
265

266
267
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
268
            if gpu_mem is not None and gpu_mem < 25_000:
269
                self.chunked_prefill_size = 2048
270
271
            elif self.disaggregation_mode != "null":
                self.chunked_prefill_size = 16384
272
273
            else:
                self.chunked_prefill_size = 8192
Lianmin Zheng's avatar
Lianmin Zheng committed
274
275
        assert self.chunked_prefill_size % self.page_size == 0

276
277
278
        assert self.moe_dense_tp_size in {
            1,
            None,
Lianmin Zheng's avatar
Lianmin Zheng committed
279
        }, "moe_dense_tp_size only support 1 and None currently"
280

281
        if self.attention_backend == "flashmla":
282
283
284
285
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
Lianmin Zheng's avatar
Lianmin Zheng committed
286

287
288
289
290
291
292
        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

293
        # Set cuda graph max batch size
294
        if self.cuda_graph_max_bs is None:
295
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
296
            if gpu_mem is not None and gpu_mem < 25_000:
297
298
299
300
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
301

302
        # Set kernel backends for hpu device
303
304
305
306
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
307
        # Set kernel backends
308
        if self.sampling_backend is None:
309
310
311
312
313
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
314
            logger.warning(
315
316
317
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
318

319
320
321
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
322

323
324
325
326
327
328
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Overlap scheduler is disabled because of using pipeline parallelism."
            )

329
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
330
        if self.enable_dp_attention:
331
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
332
333
334
335
336
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
337
            logger.warning(
338
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
339
            )
340

341
342
343
344
345
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
            ), "Please enable dp attention when setting enable_dp_attention. "

346
        # DeepEP MoE
Lianmin Zheng's avatar
Lianmin Zheng committed
347
        self.enable_sp_layernorm = False
348
        if self.enable_deepep_moe:
349
350
351
352
            if self.deepep_mode == "auto":
                assert (
                    not self.enable_dp_attention
                ), "DeepEP MoE `auto` mode is not supported with DP Attention."
353
354
355
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
356
357
358
359
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
Lianmin Zheng's avatar
Lianmin Zheng committed
360
            logger.warning(
361
362
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
363

364
365
366
367
368
369
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

370
371
372
373
374
375
376
377
378
        if self.expert_distribution_recorder_buffer_size is None:
            # TODO pr-chain: enable this later
            # if (x := self.eplb_rebalance_num_iterations) is not None:
            #     self.expert_distribution_recorder_buffer_size = x
            if False:
                pass
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

379
        # Speculative Decoding
380
381
382
383
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
384
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
385
            if self.max_running_requests is None:
386
                self.max_running_requests = 48
387
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
388
            logger.warning(
389
                "Overlap scheduler is disabled because of using "
390
                "eagle speculative decoding."
391
            )
392

393
394
395
            model_arch = get_model_arch(self)

            # Auto set draft_model_path DeepSeek-V3/R1
396
397
398
399
400
401
402
            if model_arch == "DeepseekV3ForCausalLM":
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
403

404
405
406
407
408
409
410
411
412
413
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
414
                ) = auto_choose_speculative_params(model_arch)
415
416
417

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
418
                logger.warning(
419
420
421
422
423
424
425
                    "speculative_eagle_topk is adjusted to 1 when page_size > 1"
                )

            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
426
                logger.warning(
427
428
429
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
430

431
            # The token generated from the verify step is counted.
432
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
433
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
434

435
436
437
438
439
440
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

441
442
443
        if is_remote_url(self.model_path):
            self.load_format = "remote"

444
445
446
447
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
448
449
450
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
451
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
452
453
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
454
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
455

456
457
458
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
459
460
461
462
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
463

Lianmin Zheng's avatar
Lianmin Zheng committed
464
465
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
466
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
467
468
469
470
471
472
473
474
475
476
477
478
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
479
480
481
482
483
484
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
485
486
487
488
489
490
491
492
493
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
494
495
496
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
497
            help="If set, skip init tokenizer and pass input_ids in generate request.",
498
        )
499
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
500
501
502
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
503
504
505
506
507
508
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
509
                "sharded_state",
510
511
                "gguf",
                "bitsandbytes",
512
                "layered",
513
                "remote",
514
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
515
516
517
518
519
520
521
522
523
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
524
            "which is mainly for profiling."
525
526
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
527
528
529
530
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
531
        )
532
533
534
535
536
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
537
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
538
            "--dtype",
Cody Yu's avatar
Cody Yu committed
539
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
540
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
541
542
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
543
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
544
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
545
546
547
548
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
549
550
            '* "float32" for FP32 precision.',
        )
551
552
553
554
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
555
556
557
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
558
559
560
561
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
562
563
564
565
566
567
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
568
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
569
                "bitsandbytes",
570
                "gguf",
571
                "modelopt",
572
                "modelopt_fp4",
573
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
574
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
575
                "moe_wna16",
Ying Sheng's avatar
Ying Sheng committed
576
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
577
578
            help="The quantization method.",
        )
579
580
581
582
583
584
585
586
587
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
588
589
590
591
592
593
594
595
596
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
597
            default=ServerArgs.device,
598
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
599
        )
600
601
602
603
604
605
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
606
607
608
609
610
611
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
612
613
614
615
616
617
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
618
619
620
621
622
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
623
624
625
626
627
628
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
629
630
631
632
633
634
635
636
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
637

638
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
639
640
641
642
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
643
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
644
        )
645
646
647
648
649
650
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
651
652
653
654
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
655
656
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
657
        )
658
659
660
661
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
662
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
663
664
665
666
667
668
669
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
670
        parser.add_argument(
671
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
672
            type=str,
673
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
674
            choices=["lpm", "random", "fcfs", "dfs-weight"],
675
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
676
        )
677
678
679
680
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
681
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
682
        )
683
684
685
686
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
687
            help="How many GBs of RAM to reserve for CPU offloading.",
688
        )
689
690
691
692
693
694
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
695

696
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
697
        parser.add_argument(
698
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
699
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
700
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
701
            default=ServerArgs.tp_size,
702
            help="The tensor parallelism size.",
703
        )
704
705
706
707
708
709
710
711
712
713
714
715
716
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
717
718
719
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
720
            default=ServerArgs.stream_interval,
721
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
722
        )
723
724
725
726
727
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
728
729
730
731
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
732
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
733
        )
734
735
736
737
738
739
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
740
741
742
743
744
745
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
746
747
748
749
750
751
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
752
753
754
755
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
756
            help="Model download directory for huggingface.",
757
        )
758
759
760
761
762
763
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
764
765
766
767
768
769
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
770
771

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
772
773
774
775
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
776
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
777
        )
778
        parser.add_argument(
779
780
781
782
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
783
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
784
        parser.add_argument(
785
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
786
            action="store_true",
787
788
789
790
791
792
793
794
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
795
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
796
797
798
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
799
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
800
        )
801
802
803
804
805
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
833
834
835
836
837
838
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
839
840
841
842
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
843
            help="The log interval of decode batch.",
844
        )
845
846
847
848
849
850
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
851

852
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
853
854
855
856
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
857
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
858
        )
859
        parser.add_argument(
860
            "--file-storage-path",
861
            type=str,
862
            default=ServerArgs.file_storage_path,
863
864
            help="The path of the file storage in backend.",
        )
865
866
867
868
869
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
870
871
872
873
874
875
876
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
877

878
879
        # Data parallelism
        parser.add_argument(
880
            "--data-parallel-size",
881
882
883
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
884
            help="The data parallelism size.",
885
886
887
888
889
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
890
            help="The load balancing strategy for data parallelism.",
891
892
893
894
895
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
896

xiaobochen's avatar
xiaobochen committed
897
898
899
900
901
902
903
904
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
905

906
        # Multi-node distributed serving
907
        parser.add_argument(
908
            "--dist-init-addr",
909
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
910
            type=str,
911
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
912
913
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
914
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
915
        )
916
917
918
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
919

Lianmin Zheng's avatar
Lianmin Zheng committed
920
921
922
923
924
925
926
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
927
928
929
930
931
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
932

933
934
935
936
937
938
939
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
940
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
941
942
943
944
945
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
946
947
948
949
950
951
952
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
953
954
955
        )

        # Kernel backend
956
957
958
        parser.add_argument(
            "--attention-backend",
            type=str,
959
960
961
962
963
964
965
966
            choices=[
                "flashinfer",
                "triton",
                "torch_native",
                "fa3",
                "flashmla",
                "cutlass_mla",
            ],
967
968
969
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
970
971
972
973
974
975
976
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
977
978
979
        parser.add_argument(
            "--grammar-backend",
            type=str,
980
            choices=["xgrammar", "outlines", "llguidance", "none"],
981
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
982
            help="Choose the backend for grammar-guided decoding.",
983
        )
984
985
        parser.add_argument(
            "--enable-flashinfer-mla",
986
987
            action=DeprecatedAction,
            help="--enable-flashinfer-mla is deprecated. Please use '--attention-backend flashinfer' instead.",
988
        )
lukec's avatar
lukec committed
989
990
        parser.add_argument(
            "--enable-flashmla",
991
992
            action=DeprecatedAction,
            help="--enable-flashmla is deprecated. Please use '--attention-backend flashmla' instead.",
lukec's avatar
lukec committed
993
        )
994
995
996
997
998
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
999

1000
1001
1002
1003
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1004
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1021
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1022
1023
            default=ServerArgs.speculative_eagle_topk,
        )
1024
1025
1026
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1027
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1028
1029
            default=ServerArgs.speculative_num_draft_tokens,
        )
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1042
1043
1044
1045
1046
1047
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1086
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1087
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1088
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1089
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1090
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1091
        )
1092
1093
1094
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1095
            help="Disable cuda graph.",
1096
        )
1097
        parser.add_argument(
1098
1099
            "--disable-cuda-graph-padding",
            action="store_true",
1100
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1101
        )
1102
1103
1104
1105
1106
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1107
1108
1109
1110
1111
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1112
        parser.add_argument(
1113
            "--disable-outlines-disk-cache",
1114
            action="store_true",
1115
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1116
        )
1117
1118
1119
1120
1121
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1122
        parser.add_argument(
1123
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1124
            action="store_true",
1125
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1126
        )
1127
1128
1129
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1130
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1131
        )
Ke Bao's avatar
Ke Bao committed
1132
1133
1134
1135
1136
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently only DeepSeek-V2 is supported.",
        )
1137
1138
1139
1140
1141
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
xiaobochen's avatar
xiaobochen committed
1142
1143
1144
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
1145
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
xiaobochen's avatar
xiaobochen committed
1146
        )
1147
1148
1149
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1150
1151
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1152
        parser.add_argument(
1153
            "--torch-compile-max-bs",
1154
            type=int,
1155
            default=ServerArgs.torch_compile_max_bs,
1156
1157
            help="Set the maximum batch size when using torch compile.",
        )
1158
        parser.add_argument(
1159
            "--cuda-graph-max-bs",
1160
            type=int,
1161
            default=ServerArgs.cuda_graph_max_bs,
1162
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
1163
        )
1164
1165
1166
1167
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
1168
            help="Set the list of batch sizes for cuda graph.",
1169
        )
1170
1171
1172
1173
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1174
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1175
        )
1176
1177
1178
1179
1180
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1181
        parser.add_argument(
1182
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
            action="store_true",
1184
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1185
        )
1186
        parser.add_argument(
1187
            "--triton-attention-reduce-in-fp32",
1188
            action="store_true",
1189
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1190
            "This only affects Triton attention kernels.",
1191
        )
1192
1193
1194
1195
1196
1197
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1198
1199
1200
1201
1202
1203
1204
1205
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1206
1207
1208
1209
1210
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1211
1212
1213
1214
1215
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1216
1217
1218
1219
1220
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1221
1222
1223
1224
1225
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1226
1227
1228
        parser.add_argument(
            "--tool-call-parser",
            type=str,
1229
            choices=["qwen25", "mistral", "llama3", "deepseekv3", "pythonic"],
YAMY's avatar
YAMY committed
1230
            default=ServerArgs.tool_call_parser,
1231
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', and 'pythonic'.",
YAMY's avatar
YAMY committed
1232
        )
1233
1234
1235
1236
1237
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1238
1239
1240
1241
1242
1243
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
1257
1258
1259
1260
1261
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1262
1263
1264
1265
1266
1267
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1268
1269
1270
1271
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
1272
            default="auto",
1273
1274
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
1275
1276
1277
1278
1279
1280
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
1299
1300
1301
1302
1303
1304
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster.",
        )
1305

1306
1307
1308
        parser.add_argument(
            "--n-share-experts-fusion",
            type=int,
1309
            default=0,
1310
            help="The number of shared_experts need to be replicated to fuse with normal experts in deepseek v3/r1, "
1311
            "set it to tp_size can get best optimized performance. Note that for architectures with SM==90, we have enabled the shared experts fusion optimization by default for DeepSeek V3/R1, with n_share_experts_fusion automatically set to the TP size.",
1312
        )
1313
1314
1315
1316
1317
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1318
1319
1320
1321
1322
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1323

1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
1367
1368
1369
1370
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1371
            choices=["mooncake", "nixl"],
1372
1373
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1374
1375
1376
1377
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1378
1379
1380
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1381
        )
1382
1383
1384
1385
1386
1387
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
Byron Hsu's avatar
Byron Hsu committed
1388

1389
1390
1391
1392
1393
1394
1395
1396
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1397
1398
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1399
        args.tp_size = args.tensor_parallel_size
1400
        args.pp_size = args.pipeline_parallel_size
1401
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1402
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1403
1404
1405
1406
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1407
        if is_valid_ipv6_address(self.host):
1408
1409
1410
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1411

1412
1413
    def check_server_args(self):
        assert (
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        # FIXME pp constraints
        if self.pp_size > 1:
            logger.warning(f"Turn off overlap scheule for pipeline parallelism.")
            self.disable_overlap_schedule = True
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1427
        assert not (
1428
1429
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1430
1431
1432
1433
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
1434
        ), "compatibility of lora and cuda graph and radix attention is in progress"
1435
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1436
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1437

1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1448

Lianmin Zheng's avatar
Lianmin Zheng committed
1449
def prepare_server_args(argv: List[str]) -> ServerArgs:
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1462
    raw_args = parser.parse_args(argv)
1463
1464
1465
1466
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1467
1468
1469
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1470
1471
@dataclasses.dataclass
class PortArgs:
1472
1473
1474
1475
1476
1477
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1478

1479
1480
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1481

1482
1483
1484
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1485
    @staticmethod
1486
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1487
        port = server_args.port + random.randint(100, 1000)
1488
1489
1490
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1491
1492
1493
1494
            if port < 60000:
                port += 42
            else:
                port -= 43
1495

1496
1497
1498
1499
1500
1501
1502
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1503
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1504
1505
1506
1507
1508
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1509
1510
1511
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1512
1513
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1514

1515
1516
1517
1518
1519
1520
1521
1522
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1523
                    port_base + 3
1524
                )  # TokenizerManager to DataParallelController
1525
            else:
1526
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1527
1528
1529
1530
1531
1532

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1533
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1534
            )
1535

1536
1537
1538
1539
1540
1541
1542
1543
1544
1545

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1556
1557


1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
def get_model_arch(args: ServerArgs):
    hf_config = get_config(
        args.model_path,
        trust_remote_code=args.trust_remote_code,
        revision=args.revision,
        model_override_args=json.loads(args.json_model_override_args),
    )
    return hf_config.architectures[0]


def auto_choose_speculative_params(arch: str):
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)