server_args.py 75.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
import tempfile
23
from typing import List, Literal, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file, get_config
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
29
    get_device,
Lianmin Zheng's avatar
Lianmin Zheng committed
30
    get_device_memory_capacity,
31
    is_flashinfer_available,
HAI's avatar
HAI committed
32
    is_hip,
33
    is_port_available,
34
    is_remote_url,
35
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
36
    nullable_str,
37
)
38

39
40
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
41
42
43

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
44
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
45
46
47
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
48
    skip_tokenizer_init: bool = False
Zilin Zhu's avatar
Zilin Zhu committed
49
    skip_server_warmup: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
50
    load_format: str = "auto"
51
    model_loader_extra_config: str = "{}"
52
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
53
    dtype: str = "auto"
54
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
55
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
56
    quantization_param_path: Optional[str] = None
57
    context_length: Optional[int] = None
58
    device: Optional[str] = None
59
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
60
    chat_template: Optional[str] = None
61
    completion_template: Optional[str] = None
62
    is_embedding: bool = False
63
    enable_multimodal: Optional[bool] = None
64
    revision: Optional[str] = None
tarinkk's avatar
tarinkk committed
65
    hybrid_kvcache_ratio: Optional[float] = None
Hanming Lu's avatar
Hanming Lu committed
66
    swa_full_tokens_ratio: float = 0.8
67
    impl: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
68

69
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
70
71
    host: str = "127.0.0.1"
    port: int = 30000
72
    nccl_port: Optional[int] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
73
74

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
75
    mem_fraction_static: Optional[float] = None
76
    max_running_requests: Optional[int] = None
77
    max_total_tokens: Optional[int] = None
78
    chunked_prefill_size: Optional[int] = None
79
    max_prefill_tokens: int = 16384
80
    schedule_policy: str = "fcfs"
81
    schedule_conservativeness: float = 1.0
82
    cpu_offload_gb: int = 0
83
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
84
85
86

    # Other runtime options
    tp_size: int = 1
87
88
    pp_size: int = 1
    max_micro_batch_size: Optional[int] = None
89
    stream_interval: int = 1
90
    stream_output: bool = False
91
    random_seed: Optional[int] = None
92
    constrained_json_whitespace_pattern: Optional[str] = None
93
    watchdog_timeout: float = 300
94
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
95
    download_dir: Optional[str] = None
96
    base_gpu_id: int = 0
97
    gpu_id_step: int = 1
98
    sleep_on_idle: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
99
100
101

    # Logging
    log_level: str = "info"
102
    log_level_http: Optional[str] = None
103
    log_requests: bool = False
104
    log_requests_level: int = 0
105
    crash_dump_folder: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
106
    show_time_cost: bool = False
107
    enable_metrics: bool = False
108
109
110
111
    bucket_time_to_first_token: Optional[List[float]] = None
    bucket_e2e_request_latency: Optional[List[float]] = None
    bucket_inter_token_latency: Optional[List[float]] = None
    collect_tokens_histogram: bool = False
112
    decode_log_interval: int = 40
113
    enable_request_time_stats_logging: bool = False
114
    kv_events_config: Optional[str] = None
Liangsheng Yin's avatar
Liangsheng Yin committed
115

116
    # API related
117
    api_key: Optional[str] = None
118
    file_storage_path: str = "sglang_storage"
119
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
120
    reasoning_parser: Optional[str] = None
121
    tool_call_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
122

123
124
125
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
126

127
    # Multi-node distributed serving
128
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
129
    nnodes: int = 1
130
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
131
132
133

    # Model override args in JSON
    json_model_override_args: str = "{}"
134
    preferred_sampling_params: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
135

136
    # LoRA
137
    lora_paths: Optional[Union[dict[str, str], List[str]]] = None
138
    max_loras_per_batch: int = 8
139
    lora_backend: str = "triton"
140
141

    # Kernel backend
142
143
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
144
    grammar_backend: Optional[str] = None
145
    mm_attention_backend: Optional[str] = None
146

147
148
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
149
    speculative_draft_model_path: Optional[str] = None
150
151
152
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
153
154
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
155
    speculative_token_map: Optional[str] = None
156

157
158
159
160
    # Expert parallelism
    ep_size: int = 1
    enable_ep_moe: bool = False
    enable_deepep_moe: bool = False
161
    enable_flashinfer_moe: bool = False
162
    enable_flashinfer_allreduce_fusion: bool = False
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    deepep_mode: Optional[Literal["auto", "normal", "low_latency"]] = "auto"
    ep_num_redundant_experts: int = 0
    ep_dispatch_algorithm: Optional[Literal["static", "dynamic", "fake"]] = None
    init_expert_location: str = "trivial"
    enable_eplb: bool = False
    eplb_algorithm: str = "auto"
    eplb_rebalance_num_iterations: int = 1000
    eplb_rebalance_layers_per_chunk: Optional[int] = None
    expert_distribution_recorder_mode: Optional[
        Literal["stat", "stat_approx", "per_pass", "per_token"]
    ] = None
    expert_distribution_recorder_buffer_size: Optional[int] = None
    enable_expert_distribution_metrics: bool = False
    deepep_config: Optional[str] = None
    moe_dense_tp_size: Optional[int] = None

179
180
    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
181
    ds_channel_config_path: Optional[str] = None
182
183
184
185
186
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

187
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
188
    disable_radix_cache: bool = False
189
190
    cuda_graph_max_bs: Optional[int] = None
    cuda_graph_bs: Optional[List[int]] = None
191
    disable_cuda_graph: bool = False
192
    disable_cuda_graph_padding: bool = False
193
    enable_profile_cuda_graph: bool = False
194
    enable_nccl_nvls: bool = False
195
    enable_tokenizer_batch_encode: bool = False
196
    disable_outlines_disk_cache: bool = False
197
    disable_custom_all_reduce: bool = False
198
    enable_mscclpp: bool = False
199
    disable_overlap_schedule: bool = False
200
    disable_overlap_cg_plan: bool = False
201
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
202
    enable_dp_attention: bool = False
203
    enable_dp_lm_head: bool = False
204
    enable_two_batch_overlap: bool = False
205
    enable_torch_compile: bool = False
206
    torch_compile_max_bs: int = 32
207
    torchao_config: str = ""
208
    enable_nan_detection: bool = False
209
    enable_p2p_check: bool = False
210
    triton_attention_reduce_in_fp32: bool = False
211
    triton_attention_num_kv_splits: int = 8
212
    num_continuous_decode_steps: int = 1
213
    delete_ckpt_after_loading: bool = False
214
    enable_memory_saver: bool = False
215
    allow_auto_truncate: bool = False
216
    enable_custom_logit_processor: bool = False
217
    enable_hierarchical_cache: bool = False
218
    hicache_ratio: float = 2.0
Zhiqiang Xie's avatar
Zhiqiang Xie committed
219
220
    hicache_size: int = 0
    hicache_write_policy: str = "write_through_selective"
221
    hicache_io_backend: str = ""
222
    flashinfer_mla_disable_ragged: bool = False
223
    disable_shared_experts_fusion: bool = False
224
    disable_chunked_prefix_cache: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
225
    disable_fast_image_processor: bool = False
226
    enable_return_hidden_states: bool = False
Yuan Luo's avatar
Yuan Luo committed
227
    enable_triton_kernel_moe: bool = False
228
    warmups: Optional[str] = None
Hanming Lu's avatar
Hanming Lu committed
229
    disable_hybrid_swa_memory: bool = False
230
231
232
233
234

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
235
    debug_tensor_dump_prefill_only: bool = False
236

Byron Hsu's avatar
Byron Hsu committed
237
238
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
239
    disaggregation_transfer_backend: str = "mooncake"
240
    disaggregation_bootstrap_port: int = 8998
Byron Hsu's avatar
Byron Hsu committed
241
242
243
    disaggregation_decode_tp: Optional[int] = None
    disaggregation_decode_dp: Optional[int] = None
    disaggregation_prefill_pp: Optional[int] = 1
244
    disaggregation_ib_device: Optional[str] = None
245
    num_reserved_decode_tokens: int = 512  # used for decode kv cache offload in PD
246
    pdlb_url: Optional[str] = None
Byron Hsu's avatar
Byron Hsu committed
247

248
249
    # For model weight update
    custom_weight_loader: Optional[List[str]] = None
250
    weight_loader_disable_mmap: bool = False
251

Lianmin Zheng's avatar
Lianmin Zheng committed
252
    def __post_init__(self):
253
254
255
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
256
            logger.warning(
257
258
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
259
260
261
262
263
264
265
266
267
        if self.enable_flashinfer_moe:
            assert (
                self.quantization == "modelopt_fp4"
            ), "modelopt_fp4 quantization is required for Flashinfer MOE"
            os.environ["TRTLLM_ENABLE_PDL"] = "1"
            self.disable_shared_experts_fusion = True
            logger.warning(
                f"Flashinfer MoE is enabled. Shared expert fusion is disabled."
            )
268
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
269
270
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
271

272
273
274
        if self.device is None:
            self.device = get_device()

275
276
277
        if self.served_model_name is None:
            self.served_model_name = self.model_path

278
279
280
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

Lianmin Zheng's avatar
Lianmin Zheng committed
281
        gpu_mem = get_device_memory_capacity(self.device)
282

283
        # Set mem fraction static
Lianmin Zheng's avatar
Lianmin Zheng committed
284
        if self.mem_fraction_static is None:
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
            if gpu_mem is not None:
                # GPU memory capacity = model weights + KV cache pool + activations + cuda graph buffers
                # mem_fraction_static = (model weights + KV cache pool) / GPU memory capacity.

                # We want mem_fraction_static to be as large as possible but still has enough room
                # for activations and cuda graph buffers. We use the following heuristic to
                # compute the needed size for activations and cuda graph buffers:
                # - The size of the activation depends on the chunked_prefill_size and model size.
                # - The size of cuda graph buffers depends on the cuda graph capture range and model size.
                # For GPUs with more memory, we use a larger chunked_prefill_size and
                # capture more cuda graphs, so they need to reserve more memory.
                parallel_size = self.tp_size * self.pp_size

                if gpu_mem < 20 * 1024:
                    # T4, 4080. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 35 * 1024:
                    # A10, L40, 4090, 5090. (chunked_prefill_size 2k, cuda_graph_max_bs 8)
                    reserved_mem = (2.8 + parallel_size / 10) * 1024
                elif gpu_mem < 90 * 1024:
                    # H100, A100. (chunked_prefill_size 8k, cuda_graph_max_bs 160)
                    reserved_mem = (9.5 + parallel_size / 2) * 1024
                elif gpu_mem < 100 * 1024:
                    # H20. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
                elif gpu_mem < 160 * 1024:
                    # H200. (chunked_prefill_size 8k, cuda_graph_max_bs 256)
                    reserved_mem = (12 + parallel_size / 2) * 1024
313
                else:
314
315
316
                    # B200, MI300. (chunked_prefill_size 16k, cuda_graph_max_bs 512)
                    reserved_mem = 32 * 1024

317
                if self.speculative_algorithm is not None:
318
319
320
321
322
323
                    # draft model and larger cuda graph buffers
                    reserved_mem += 2 * 1024
                if self.enable_dp_attention:
                    reserved_mem += 4 * 1024

                self.mem_fraction_static = round((gpu_mem - reserved_mem) / gpu_mem, 3)
324
            else:
325
                self.mem_fraction_static = 0.88
326

327
328
329
330
331
332
333
334
            # Lazy init to avoid circular import
            from sglang.srt.configs.model_config import ModelConfig

            # Multimodal models need more memory for the image processor
            model_config = ModelConfig.from_server_args(self)
            if model_config.is_multimodal:
                self.mem_fraction_static *= 0.90

335
336
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
337
338
339
340
341
342
343
            if gpu_mem is not None:
                if gpu_mem < 35 * 1024:  # A10, L40, 4090
                    self.chunked_prefill_size = 2048
                elif gpu_mem < 160 * 1024:  # H100, H200, A100, H20
                    self.chunked_prefill_size = 8192
                else:  # B200, MI300
                    self.chunked_prefill_size = 16384
344
            else:
345
                self.chunked_prefill_size = 4096
Lianmin Zheng's avatar
Lianmin Zheng committed
346
347
        assert self.chunked_prefill_size % self.page_size == 0

348
349
350
351
352
353
354
355
356
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
            if gpu_mem is not None and gpu_mem < 35 * 1024:
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80

357
358
359
        assert self.moe_dense_tp_size in {
            1,
            None,
Lianmin Zheng's avatar
Lianmin Zheng committed
360
        }, "moe_dense_tp_size only support 1 and None currently"
361

362
        if self.attention_backend == "flashmla":
363
364
365
366
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
Lianmin Zheng's avatar
Lianmin Zheng committed
367

368
369
370
371
372
373
        if self.attention_backend == "cutlass_mla":
            logger.warning(
                "Cutlass MLA only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

374
        # Set kernel backends for hpu device
375
376
377
378
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

Lianmin Zheng's avatar
Lianmin Zheng committed
379
        # Set kernel backends
380
381
382
383
384
        if self.device == "cpu":
            if self.attention_backend is None:
                self.attention_backend = "intel_amx"
            self.sampling_backend = "pytorch"

385
        if self.sampling_backend is None:
386
387
388
389
390
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
391
            logger.warning(
392
393
394
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
395

396
397
398
399
400
401
        if self.attention_backend == "ascend":
            logger.warning(
                "At this moment Ascend attention backend only supports a page_size of 128, change page_size to 128."
            )
            self.page_size = 128

402
403
404
        # Choose grammar backend
        if self.grammar_backend is None:
            self.grammar_backend = "xgrammar"
405

406
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
407
        if self.enable_dp_attention:
408
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
409
410
411
412
413
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
414
            logger.warning(
415
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
416
            )
417

418
419
420
        if self.enable_dp_lm_head:
            assert (
                self.enable_dp_attention
421
            ), "Please enable dp attention when setting enable_dp_lm_head. "
422

423
424
        # DeepEP MoE
        if self.enable_deepep_moe:
425
426
427
            if self.deepep_mode == "normal":
                logger.warning("Cuda graph is disabled because deepep_mode=`normal`")
                self.disable_cuda_graph = True
428
            self.ep_size = self.tp_size
Lianmin Zheng's avatar
Lianmin Zheng committed
429
            logger.warning(
430
431
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
432

433
434
435
436
437
438
        if self.pp_size > 1:
            self.disable_overlap_schedule = True
            logger.warning(
                "Pipeline parallelism is incompatible with overlap schedule."
            )

439
440
441
        if self.enable_eplb and (self.expert_distribution_recorder_mode is None):
            self.expert_distribution_recorder_mode = "stat"
            logger.info(
442
                "EPLB is enabled. The expert_distribution_recorder_mode is automatically set."
443
444
445
446
447
448
449
            )

        if (self.enable_eplb or (self.init_expert_location is not None)) and (
            self.ep_dispatch_algorithm is None
        ):
            self.ep_dispatch_algorithm = "static"
            logger.info(
450
                "EPLB is enabled or init_expert_location is provided. ep_dispatch_algorithm is configured."
451
452
453
454
455
456
457
            )

        if self.enable_expert_distribution_metrics and (
            self.expert_distribution_recorder_mode is None
        ):
            self.expert_distribution_recorder_mode = "stat"

458
        if self.expert_distribution_recorder_buffer_size is None:
459
460
            if (x := self.eplb_rebalance_num_iterations) is not None:
                self.expert_distribution_recorder_buffer_size = x
461
462
463
            elif self.expert_distribution_recorder_mode is not None:
                self.expert_distribution_recorder_buffer_size = 1000

464
        # Speculative Decoding
465
466
467
468
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

Lianmin Zheng's avatar
Lianmin Zheng committed
469
        if self.speculative_algorithm in ("EAGLE", "EAGLE3"):
470
            if self.max_running_requests is None:
471
                self.max_running_requests = 48
472
            self.disable_overlap_schedule = True
Lianmin Zheng's avatar
Lianmin Zheng committed
473
            logger.warning(
474
                "Overlap scheduler is disabled because of using "
475
                "eagle speculative decoding."
476
            )
477
478
479
480
481
482
            if self.enable_mixed_chunk:
                self.enable_mixed_chunk = False
                logger.warning(
                    "Mixed chunked prefill is disabled because of using "
                    "eagle speculative decoding."
                )
483

484
485
            model_arch = get_model_arch(self)

486
            if model_arch == "DeepseekV3ForCausalLM":
Hanming Lu's avatar
Hanming Lu committed
487
                # Auto set draft_model_path DeepSeek-V3/R1
488
489
490
491
492
493
                if self.speculative_draft_model_path is None:
                    self.speculative_draft_model_path = self.model_path
                else:
                    logger.warning(
                        "DeepSeek MTP does not require setting speculative_draft_model_path."
                    )
Hanming Lu's avatar
Hanming Lu committed
494
495
496
497
498
499
500
501
            elif "Llama4" in model_arch:
                # TODO: remove this after Llama4 supports in other backends
                if self.attention_backend != "fa3":
                    self.attention_backend = "fa3"
                    logger.warning(
                        "Llama4 requires using fa3 attention backend. "
                        "Attention backend is automatically set to fa3."
                    )
502

503
504
505
506
507
508
509
510
511
512
            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
513
                ) = auto_choose_speculative_params(self)
514

515
516
517
518
            if (
                self.speculative_eagle_topk == 1
                and self.speculative_num_draft_tokens != self.speculative_num_steps + 1
            ):
Lianmin Zheng's avatar
Lianmin Zheng committed
519
                logger.warning(
520
521
522
                    "speculative_num_draft_tokens is adjusted to speculative_num_steps + 1 when speculative_eagle_topk == 1"
                )
                self.speculative_num_draft_tokens = self.speculative_num_steps + 1
523

524
            # The token generated from the verify step is counted.
525
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
526
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
527

528
529
530
531
532
533
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

534
535
536
        if is_remote_url(self.model_path):
            self.load_format = "remote"

537
538
539
540
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
541
        # PD disaggregation
Byron Hsu's avatar
Byron Hsu committed
542
543
544
545
546
547
548
549
        if self.disaggregation_mode == "decode":
            assert (
                self.disaggregation_decode_tp is None
            ), "Cannot set --disaggregation-decode-tp for the decode engine."
            assert (
                self.disaggregation_decode_dp is None
            ), "Cannot set --disaggregation-decode-dp for the decode engine."

Byron Hsu's avatar
Byron Hsu committed
550
            self.disable_radix_cache = True
551
            logger.warning("KV cache is forced as chunk cache for decode server")
Byron Hsu's avatar
Byron Hsu committed
552
553
554
555
556
557
558
559
560
561
562
        elif self.disaggregation_mode == "prefill":
            if self.disaggregation_decode_tp is None:
                self.disaggregation_decode_tp = self.tp_size
            if self.disaggregation_decode_dp is None:
                self.disaggregation_decode_dp = self.dp_size

            self.disaggregation_prefill_pp = self.pp_size
            self.validate_disagg_tp_size(self.tp_size, self.disaggregation_decode_tp)

            self.disable_cuda_graph = True
            logger.warning("Cuda graph is disabled for prefill server")
Byron Hsu's avatar
Byron Hsu committed
563

564
565
566
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )
567
568
569
570
        # Set env var before grammar backends init
        os.environ["SGLANG_DISABLE_OUTLINES_DISK_CACHE"] = (
            "1" if self.disable_outlines_disk_cache else "0"
        )
571

572
573
574
        if self.custom_weight_loader is None:
            self.custom_weight_loader = []

Byron Hsu's avatar
Byron Hsu committed
575
576
577
578
579
580
581
582
    def validate_disagg_tp_size(self, prefill_tp: int, decode_tp: int):
        larger_tp = max(decode_tp, prefill_tp)
        smaller_tp = min(decode_tp, prefill_tp)
        assert larger_tp % smaller_tp == 0, (
            "Different tp size is supported only when one tp is multiple of the other. "
            f"decode_tp={decode_tp}, prefill_tp={prefill_tp}"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
583
584
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
585
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
586
587
        parser.add_argument(
            "--model-path",
588
            "--model",
Lianmin Zheng's avatar
Lianmin Zheng committed
589
590
591
592
593
594
595
596
597
598
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
599
        parser.add_argument(
600
601
602
603
            "--host",
            type=str,
            default=ServerArgs.host,
            help="The host of the HTTP server.",
Yuanhan Zhang's avatar
Yuanhan Zhang committed
604
605
        )
        parser.add_argument(
606
607
608
609
            "--port",
            type=int,
            default=ServerArgs.port,
            help="The port of the HTTP server.",
Yuanhan Zhang's avatar
Yuanhan Zhang committed
610
        )
611
612
613
614
615
616
        parser.add_argument(
            "--nccl-port",
            type=int,
            default=ServerArgs.nccl_port,
            help="The port for NCCL distributed environment setup. Defaults to a random port.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
617
618
619
620
621
622
623
624
625
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
626
627
628
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
629
            help="If set, skip init tokenizer and pass input_ids in generate request.",
630
        )
Zilin Zhu's avatar
Zilin Zhu committed
631
632
633
634
635
        parser.add_argument(
            "--skip-server-warmup",
            action="store_true",
            help="If set, skip warmup.",
        )
636
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
637
638
639
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
640
641
642
643
644
645
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
646
                "sharded_state",
647
648
                "gguf",
                "bitsandbytes",
649
                "layered",
650
                "remote",
651
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
652
653
654
655
656
657
658
659
660
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
661
            "which is mainly for profiling."
662
663
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
664
665
666
667
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
668
        )
669
670
671
672
673
674
675
        parser.add_argument(
            "--model-loader-extra-config",
            type=str,
            help="Extra config for model loader. "
            "This will be passed to the model loader corresponding to the chosen load_format.",
            default=ServerArgs.model_loader_extra_config,
        )
676
677
678
679
680
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
681
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
682
            "--dtype",
Cody Yu's avatar
Cody Yu committed
683
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
684
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
685
686
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
687
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
688
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
689
690
691
692
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
693
694
            '* "float32" for FP32 precision.',
        )
695
696
697
698
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
699
700
701
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
702
703
704
705
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
706
707
708
709
710
711
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
712
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
713
                "bitsandbytes",
714
                "gguf",
715
                "modelopt",
716
                "modelopt_fp4",
717
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
718
                "w8a8_fp8",
AniZpZ's avatar
AniZpZ committed
719
                "moe_wna16",
HandH1998's avatar
HandH1998 committed
720
                "qoq",
721
                "w4afp8",
Ying Sheng's avatar
Ying Sheng committed
722
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
723
724
            help="The quantization method.",
        )
725
726
727
728
729
730
731
732
733
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
734
735
736
737
738
739
740
741
742
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
743
            default=ServerArgs.device,
744
            help="The device to use ('cuda', 'xpu', 'hpu', 'npu', 'cpu'). Defaults to auto-detection if not specified.",
745
        )
746
747
748
749
750
751
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
752
753
754
755
756
757
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
758
759
760
761
762
763
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
764
765
766
767
768
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
769
770
771
772
773
774
        parser.add_argument(
            "--enable-multimodal",
            default=ServerArgs.enable_multimodal,
            action="store_true",
            help="Enable the multimodal functionality for the served model. If the model being served is not multimodal, nothing will happen",
        )
775
776
777
778
779
780
781
782
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
783
784
785
786
787
788
789
790
791
792
793
794
        parser.add_argument(
            "--impl",
            type=str,
            default=ServerArgs.impl,
            help="Which implementation of the model to use.\n\n"
            '* "auto" will try to use the SGLang implementation if it exists '
            "and fall back to the Transformers implementation if no SGLang "
            "implementation is available.\n"
            '* "sglang" will use the SGLang model implementation.\n'
            '* "transformers" will use the Transformers model '
            "implementation.\n",
        )
795

796
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
797
798
799
800
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
801
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
802
        )
803
804
805
806
807
808
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
809
810
811
812
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
813
814
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
815
        )
816
817
818
819
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
820
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
821
822
823
824
825
826
827
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
828
        parser.add_argument(
829
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
830
            type=str,
831
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
832
            choices=["lpm", "random", "fcfs", "dfs-weight"],
833
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
834
        )
835
836
837
838
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
839
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
840
        )
841
842
843
844
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
845
            help="How many GBs of RAM to reserve for CPU offloading.",
846
        )
847
848
849
850
851
852
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
tarinkk's avatar
tarinkk committed
853
854
855
856
857
858
859
860
861
862
863
864
        parser.add_argument(
            "--hybrid-kvcache-ratio",
            nargs="?",
            const=0.5,
            type=float,
            default=ServerArgs.hybrid_kvcache_ratio,
            help=(
                "Mix ratio in [0,1] between uniform and hybrid kv buffers "
                "(0.0 = pure uniform: swa_size / full_size = 1)"
                "(1.0 = pure hybrid: swa_size / full_size = local_attention_size / context_length)"
            ),
        )
Hanming Lu's avatar
Hanming Lu committed
865
866
867
868
869
870
871
872
873
874
875
876
        parser.add_argument(
            "--swa-full-tokens-ratio",
            type=float,
            default=ServerArgs.swa_full_tokens_ratio,
            help="The ratio of SWA layer KV tokens / full layer KV tokens, regardless of the number of swa:full layers. It should be between 0 and 1. "
            "E.g. 0.5 means if each swa layer has 50 tokens, then each full layer has 100 tokens.",
        )
        parser.add_argument(
            "--disable-hybrid-swa-memory",
            action="store_true",
            help="Disable the hybrid SWA memory.",
        )
877

878
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
879
        parser.add_argument(
880
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
881
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
882
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
883
            default=ServerArgs.tp_size,
884
            help="The tensor parallelism size.",
885
        )
886
887
888
889
890
891
892
893
894
895
896
897
898
        parser.add_argument(
            "--pipeline-parallel-size",
            "--pp-size",
            type=int,
            default=ServerArgs.pp_size,
            help="The pipeline parallelism size.",
        )
        parser.add_argument(
            "--max-micro-batch-size",
            type=int,
            default=ServerArgs.max_micro_batch_size,
            help="The maximum micro batch size in pipeline parallelism.",
        )
899
900
901
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
902
            default=ServerArgs.stream_interval,
903
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
904
        )
905
906
907
908
909
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
910
911
912
913
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
914
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
915
        )
916
917
918
919
920
921
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
922
923
924
925
926
927
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
928
929
930
931
932
933
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
934
935
936
937
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
938
            help="Model download directory for huggingface.",
939
        )
940
941
942
943
944
945
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
946
947
948
949
950
951
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
952
953
954
955
956
        parser.add_argument(
            "--sleep-on-idle",
            action="store_true",
            help="Reduce CPU usage when sglang is idle.",
        )
957
958

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
959
960
961
962
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
963
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
964
        )
965
        parser.add_argument(
966
967
968
969
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
970
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
971
        parser.add_argument(
972
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
973
            action="store_true",
974
975
976
977
978
979
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
980
981
982
983
984
985
986
987
            help="0: Log metadata (no sampling parameters). 1: Log metadata and sampling parameters. 2: Log metadata, sampling parameters and partial input/output. 3: Log every input/output.",
            choices=[0, 1, 2, 3],
        )
        parser.add_argument(
            "--crash-dump-folder",
            type=str,
            default=ServerArgs.crash_dump_folder,
            help="Folder path to dump requests from the last 5 min before a crash (if any). If not specified, crash dumping is disabled.",
Lianmin Zheng's avatar
Lianmin Zheng committed
988
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
989
990
991
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
992
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
993
        )
994
995
996
997
998
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
        parser.add_argument(
            "--bucket-time-to-first-token",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_time_to_first_token,
            help="The buckets of time to first token, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-inter-token-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_inter_token_latency,
            help="The buckets of inter-token latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--bucket-e2e-request-latency",
            type=float,
            nargs="+",
            default=ServerArgs.bucket_e2e_request_latency,
            help="The buckets of end-to-end request latency, specified as a list of floats.",
        )
        parser.add_argument(
            "--collect-tokens-histogram",
            action="store_true",
            default=ServerArgs.collect_tokens_histogram,
            help="Collect prompt/generation tokens histogram.",
        )
1026
1027
1028
1029
1030
1031
        parser.add_argument(
            "--kv-events-config",
            type=str,
            default=None,
            help="Config in json format for NVIDIA dynamo KV event publishing. Publishing will be enabled if this flag is used.",
        )
1032
1033
1034
1035
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
1036
            help="The log interval of decode batch.",
1037
        )
1038
1039
1040
1041
1042
1043
        parser.add_argument(
            "--enable-request-time-stats-logging",
            action="store_true",
            default=ServerArgs.enable_request_time_stats_logging,
            help="Enable per request time stats logging",
        )
1044

1045
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
1046
1047
1048
1049
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
1050
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1051
        )
1052
        parser.add_argument(
1053
            "--file-storage-path",
1054
            type=str,
1055
            default=ServerArgs.file_storage_path,
1056
1057
            help="The path of the file storage in backend.",
        )
1058
1059
1060
1061
1062
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
1063
1064
1065
1066
1067
1068
1069
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
1070
1071
1072
        parser.add_argument(
            "--tool-call-parser",
            type=str,
Atream's avatar
Atream committed
1073
1074
1075
1076
1077
1078
1079
1080
            choices=[
                "qwen25",
                "mistral",
                "llama3",
                "deepseekv3",
                "pythonic",
                "kimi_k2",
            ],
1081
            default=ServerArgs.tool_call_parser,
Atream's avatar
Atream committed
1082
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', 'llama3', 'deepseekv3', 'pythonic', and 'kimi_k2'.",
1083
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1084

1085
1086
        # Data parallelism
        parser.add_argument(
1087
            "--data-parallel-size",
1088
1089
1090
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
1091
            help="The data parallelism size.",
1092
1093
1094
1095
1096
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
1097
            help="The load balancing strategy for data parallelism.",
1098
1099
1100
1101
1102
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
1103

1104
        # Multi-node distributed serving
1105
        parser.add_argument(
1106
            "--dist-init-addr",
1107
            "--nccl-init-addr",  # For backward compatibility. This will be removed in the future.
1108
            type=str,
1109
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
1110
1111
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
1112
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
1113
        )
1114
1115
1116
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
1117

Lianmin Zheng's avatar
Lianmin Zheng committed
1118
1119
1120
1121
1122
1123
1124
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )
1125
1126
1127
1128
1129
        parser.add_argument(
            "--preferred-sampling-params",
            type=str,
            help="json-formatted sampling settings that will be returned in /get_model_info",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1130

1131
1132
1133
1134
1135
1136
1137
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
1138
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
1139
1140
1141
1142
1143
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
1144
1145
1146
1147
1148
1149
1150
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
1151
1152
1153
        )

        # Kernel backend
1154
1155
1156
        parser.add_argument(
            "--attention-backend",
            type=str,
1157
            choices=[
1158
                "aiter",
1159
                "cutlass_mla",
1160
                "fa3",
1161
                "flashinfer",
1162
                "flashmla",
1163
                "intel_amx",
1164
                "torch_native",
1165
                "ascend",
1166
                "triton",
1167
            ],
1168
1169
1170
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
1171
1172
1173
1174
1175
1176
1177
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
1178
1179
1180
        parser.add_argument(
            "--grammar-backend",
            type=str,
1181
            choices=["xgrammar", "outlines", "llguidance", "none"],
1182
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
1183
            help="Choose the backend for grammar-guided decoding.",
1184
        )
1185

1186
1187
1188
1189
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
1190
            choices=["EAGLE", "EAGLE3", "NEXTN"],
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
1207
            help="The number of tokens sampled from the draft model in eagle2 each step.",
1208
1209
            default=ServerArgs.speculative_eagle_topk,
        )
1210
1211
1212
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
1213
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
1214
1215
            default=ServerArgs.speculative_num_draft_tokens,
        )
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
1228
1229
1230
1231
1232
1233
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
        parser.add_argument(
            "--mm-attention-backend",
            type=str,
            choices=["sdpa", "fa3", "triton_attn"],
            default=ServerArgs.mm_attention_backend,
            help="Set multimodal attention backend.",
        )

        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
1255
1256
1257
1258
1259
        parser.add_argument(
            "--enable-flashinfer-moe",
            action="store_true",
            help="Enable FlashInfer CUTLASS MoE backend for modelopt_fp4 quant on Blackwell. Supports MoE-EP with --enable-ep-moe",
        )
1260
1261
1262
1263
1264
        parser.add_argument(
            "--enable-flashinfer-allreduce-fusion",
            action="store_true",
            help="Enable FlashInfer allreduce fusion for Add_RMSNorm.",
        )
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
        parser.add_argument(
            "--deepep-mode",
            type=str,
            choices=["normal", "low_latency", "auto"],
            default="auto",
            help="Select the mode when enable DeepEP MoE, could be `normal`, `low_latency` or `auto`. Default is `auto`, which means `low_latency` for decode batch and `normal` for prefill batch.",
        )
        parser.add_argument(
            "--ep-num-redundant-experts",
            type=int,
            default=ServerArgs.ep_num_redundant_experts,
            help="Allocate this number of redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--ep-dispatch-algorithm",
            type=str,
            default=ServerArgs.ep_dispatch_algorithm,
            help="The algorithm to choose ranks for redundant experts in expert parallel.",
        )
        parser.add_argument(
            "--init-expert-location",
            type=str,
            default=ServerArgs.init_expert_location,
            help="Initial location of EP experts.",
        )
        parser.add_argument(
            "--enable-eplb",
            action="store_true",
            help="Enable EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-algorithm",
            type=str,
            default=ServerArgs.eplb_algorithm,
            help="Chosen EPLB algorithm",
        )
        parser.add_argument(
            "--eplb-rebalance-num-iterations",
            type=int,
            default=ServerArgs.eplb_rebalance_num_iterations,
            help="Number of iterations to automatically trigger a EPLB re-balance.",
        )
        parser.add_argument(
            "--eplb-rebalance-layers-per-chunk",
            type=int,
            default=ServerArgs.eplb_rebalance_layers_per_chunk,
            help="Number of layers to rebalance per forward pass.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-mode",
            type=str,
            default=ServerArgs.expert_distribution_recorder_mode,
            help="Mode of expert distribution recorder.",
        )
        parser.add_argument(
            "--expert-distribution-recorder-buffer-size",
            type=int,
            default=ServerArgs.expert_distribution_recorder_buffer_size,
            help="Circular buffer size of expert distribution recorder. Set to -1 to denote infinite buffer.",
        )
        parser.add_argument(
            "--enable-expert-distribution-metrics",
            action="store_true",
            help="Enable logging metrics for expert balancedness",
        )
        parser.add_argument(
            "--deepep-config",
            type=str,
            default=ServerArgs.deepep_config,
            help="Tuned DeepEP config suitable for your own cluster. It can be either a string with JSON content or a file path.",
        )
        parser.add_argument(
            "--moe-dense-tp-size",
            type=int,
            default=ServerArgs.moe_dense_tp_size,
            help="TP size for MoE dense MLP layers. This flag is useful when, with large TP size, there are errors caused by weights in MLP layers having dimension smaller than the min dimension GEMM supports.",
        )
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

1385
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
1386
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
1387
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
1388
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
1389
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
1390
        )
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
        parser.add_argument(
            "--cuda-graph-max-bs",
            type=int,
            default=ServerArgs.cuda_graph_max_bs,
            help="Set the maximum batch size for cuda graph. It will extend the cuda graph capture batch size to this value.",
        )
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1403
1404
1405
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
1406
            help="Disable cuda graph.",
1407
        )
1408
        parser.add_argument(
1409
1410
            "--disable-cuda-graph-padding",
            action="store_true",
1411
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
1412
        )
1413
1414
1415
1416
1417
        parser.add_argument(
            "--enable-profile-cuda-graph",
            action="store_true",
            help="Enable profiling of cuda graph capture.",
        )
1418
1419
1420
1421
1422
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
1423
1424
1425
1426
1427
        parser.add_argument(
            "--enable-tokenizer-batch-encode",
            action="store_true",
            help="Enable batch tokenization for improved performance when processing multiple text inputs. Do not use with image inputs, pre-tokenized input_ids, or input_embeds.",
        )
1428
        parser.add_argument(
1429
            "--disable-outlines-disk-cache",
1430
            action="store_true",
1431
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
1432
        )
1433
1434
1435
1436
1437
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
1438
1439
1440
1441
1442
        parser.add_argument(
            "--enable-mscclpp",
            action="store_true",
            help="Enable using mscclpp for small messages for all-reduce kernel and fall back to NCCL.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1443
        parser.add_argument(
1444
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
1445
            action="store_true",
1446
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1447
        )
1448
1449
1450
1451
1452
        parser.add_argument(
            "--disable-overlap-cg-plan",
            action="store_true",
            help="Disable the overlap optimization for cudagraph preparation in eagle verify.",
        )
1453
1454
1455
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
1456
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
1457
        )
Ke Bao's avatar
Ke Bao committed
1458
1459
1460
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
1461
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently DeepSeek-V2 and Qwen 2/3 MoE models are supported.",
Ke Bao's avatar
Ke Bao committed
1462
        )
1463
1464
1465
1466
1467
        parser.add_argument(
            "--enable-dp-lm-head",
            action="store_true",
            help="Enable vocabulary parallel across the attention TP group to avoid all-gather across DP groups, optimizing performance under DP attention.",
        )
1468
1469
1470
1471
1472
        parser.add_argument(
            "--enable-two-batch-overlap",
            action="store_true",
            help="Enabling two micro batches to overlap.",
        )
1473
1474
1475
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
1476
1477
            help="Optimize the model with torch.compile. Experimental feature.",
        )
1478
        parser.add_argument(
1479
            "--torch-compile-max-bs",
1480
            type=int,
1481
            default=ServerArgs.torch_compile_max_bs,
1482
1483
            help="Set the maximum batch size when using torch compile.",
        )
1484
1485
1486
1487
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1488
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1489
        )
1490
1491
1492
1493
1494
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1495
        parser.add_argument(
1496
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1497
            action="store_true",
1498
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1499
        )
1500
        parser.add_argument(
1501
            "--triton-attention-reduce-in-fp32",
1502
            action="store_true",
1503
            help="Cast the intermediate attention results to fp32 to avoid possible crashes related to fp16."
1504
            "This only affects Triton attention kernels.",
1505
        )
1506
1507
1508
1509
1510
1511
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1512
1513
1514
1515
1516
1517
1518
1519
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1520
1521
1522
1523
1524
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1525
1526
1527
1528
1529
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1530
1531
1532
1533
1534
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1535
1536
1537
1538
1539
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
1540
1541
1542
1543
1544
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1545
1546
1547
1548
1549
1550
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
Zhiqiang Xie's avatar
Zhiqiang Xie committed
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
        parser.add_argument(
            "--hicache-size",
            type=int,
            default=ServerArgs.hicache_size,
            help="The size of host KV cache memory pool in gigabytes, which will override the hicache_ratio if set.",
        )
        parser.add_argument(
            "--hicache-write-policy",
            type=str,
            choices=["write_back", "write_through", "write_through_selective"],
            default=ServerArgs.hicache_write_policy,
            help="The write policy of hierarchical cache.",
        )
1564
1565
1566
1567
1568
1569
1570
        parser.add_argument(
            "--hicache-io-backend",
            type=str,
            choices=["direct", "kernel"],
            default=ServerArgs.hicache_io_backend,
            help="The IO backend for KV cache transfer between CPU and GPU",
        )
1571
        parser.add_argument(
1572
            "--flashinfer-mla-disable-ragged",
1573
            action="store_true",
1574
            help="Not using ragged prefill wrapper when running flashinfer mla",
1575
        )
1576
        parser.add_argument(
1577
1578
1579
            "--disable-shared-experts-fusion",
            action="store_true",
            help="Disable shared experts fusion optimization for deepseek v3/r1.",
1580
        )
1581
1582
1583
1584
1585
        parser.add_argument(
            "--disable-chunked-prefix-cache",
            action="store_true",
            help="Disable chunked prefix cache feature for deepseek, which should save overhead for short sequences.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1586
1587
1588
1589
1590
        parser.add_argument(
            "--disable-fast-image-processor",
            action="store_true",
            help="Adopt base image processor instead of fast image processor.",
        )
1591
1592
1593
1594
1595
        parser.add_argument(
            "--enable-return-hidden-states",
            action="store_true",
            help="Enable returning hidden states with responses.",
        )
Yuan Luo's avatar
Yuan Luo committed
1596
1597
1598
1599
1600
        parser.add_argument(
            "--enable-triton-kernel-moe",
            action="store_true",
            help="Use triton moe grouped gemm kernel.",
        )
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )
1628
1629
1630
1631
1632
        parser.add_argument(
            "--debug-tensor-dump-prefill-only",
            action="store_true",
            help="Only dump the tensors for prefill requests (i.e. batch size > 1).",
        )
1633

Byron Hsu's avatar
Byron Hsu committed
1634
1635
1636
1637
1638
1639
1640
1641
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
1642
1643
1644
1645
        parser.add_argument(
            "--disaggregation-transfer-backend",
            type=str,
            default=ServerArgs.disaggregation_transfer_backend,
1646
            choices=["mooncake", "nixl", "ascend"],
1647
1648
            help="The backend for disaggregation transfer. Default is mooncake.",
        )
1649
1650
1651
1652
1653
1654
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )
Byron Hsu's avatar
Byron Hsu committed
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
        parser.add_argument(
            "--disaggregation-decode-tp",
            type=int,
            default=ServerArgs.disaggregation_decode_tp,
            help="Decode tp size. If not set, it matches the tp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-decode-dp",
            type=int,
            default=ServerArgs.disaggregation_decode_dp,
            help="Decode dp size. If not set, it matches the dp size of the current engine. This is only set on the prefill server.",
        )
        parser.add_argument(
            "--disaggregation-prefill-pp",
            type=int,
            default=ServerArgs.disaggregation_prefill_pp,
            help="Prefill pp size. If not set, it is default to 1. This is only set on the decode server.",
        )
1673
1674
1675
1676
        parser.add_argument(
            "--disaggregation-ib-device",
            type=str,
            default=ServerArgs.disaggregation_ib_device,
1677
1678
1679
            help="The InfiniBand devices for disaggregation transfer, accepts single device (e.g., --disaggregation-ib-device mlx5_0) "
            "or multiple comma-separated devices (e.g., --disaggregation-ib-device mlx5_0,mlx5_1). "
            "Default is None, which triggers automatic device detection when mooncake backend is enabled.",
1680
        )
1681
1682
1683
1684
1685
1686
        parser.add_argument(
            "--num-reserved-decode-tokens",
            type=int,
            default=ServerArgs.num_reserved_decode_tokens,
            help="Number of decode tokens that will have memory reserved when adding new request to the running batch.",
        )
1687
1688
1689
1690
1691
1692
        parser.add_argument(
            "--pdlb-url",
            type=str,
            default=None,
            help="The URL of the PD disaggregation load balancer. If set, the prefill/decode server will register with the load balancer.",
        )
1693
1694
1695
1696
1697
1698
1699
        parser.add_argument(
            "--custom-weight-loader",
            type=str,
            nargs="*",
            default=None,
            help="The custom dataloader which used to update the model. Should be set with a valid import path, such as my_package.weight_load_func",
        )
1700
1701
1702
1703
1704
        parser.add_argument(
            "--weight-loader-disable-mmap",
            action="store_true",
            help="Disable mmap while loading weight using safetensors.",
        )
Byron Hsu's avatar
Byron Hsu committed
1705

Lianmin Zheng's avatar
Lianmin Zheng committed
1706
1707
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1708
        args.tp_size = args.tensor_parallel_size
1709
        args.pp_size = args.pipeline_parallel_size
1710
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1711
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1712
1713
1714
1715
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1716
        if is_valid_ipv6_address(self.host):
1717
1718
1719
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1720

1721
1722
    def check_server_args(self):
        assert (
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
            self.tp_size * self.pp_size
        ) % self.nnodes == 0, "tp_size must be divisible by number of nodes"

        # FIXME pp constraints
        if self.pp_size > 1:
            assert (
                self.disable_overlap_schedule
                and self.speculative_algorithm is None
                and not self.enable_mixed_chunk
            ), "Pipeline parallelism is not compatible with overlap schedule, speculative decoding, mixed chunked prefill."

1734
        assert not (
1735
1736
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1737
1738
1739
1740
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_radix_cache)
1741
        ), "compatibility of lora and radix attention is in progress"
1742
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1743
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1744

1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1755

Lianmin Zheng's avatar
Lianmin Zheng committed
1756
def prepare_server_args(argv: List[str]) -> ServerArgs:
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1769
    raw_args = parser.parse_args(argv)
1770
1771
1772
1773
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1774
1775
1776
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1777
1778
@dataclasses.dataclass
class PortArgs:
1779
1780
1781
1782
1783
1784
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1785

1786
1787
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1788

1789
1790
1791
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1792
1793
1794
    # The ipc filename for Scheduler to send metrics
    metrics_ipc_name: str

1795
    @staticmethod
1796
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
        if server_args.nccl_port is None:
            port = server_args.port + random.randint(100, 1000)
            while True:
                if is_port_available(port):
                    break
                if port < 60000:
                    port += 42
                else:
                    port -= 43
        else:
            port = server_args.nccl_port
1808

1809
1810
1811
1812
1813
1814
1815
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1816
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1817
                metrics_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1818
1819
1820
1821
1822
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1823
1824
1825
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1826
1827
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1828

1829
1830
1831
1832
1833
1834
1835
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
1836
                # TokenizerManager to DataParallelController
1837
                scheduler_input_port = port_base + 4
1838
            else:
1839
                scheduler_input_port = port_base + 4 + 1 + dp_rank
1840
1841
1842
1843
1844
1845

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1846
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1847
                metrics_ipc_name=f"tcp://{dist_init_host}:{port_base + 3}",
1848
            )
1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1870
1871


1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
def get_model_arch(args: ServerArgs):
    hf_config = get_config(
        args.model_path,
        trust_remote_code=args.trust_remote_code,
        revision=args.revision,
        model_override_args=json.loads(args.json_model_override_args),
    )
    return hf_config.architectures[0]


1882
def auto_choose_speculative_params(self: ServerArgs):
1883
1884
1885
1886
1887
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
    kwargs = {}

    hf_config = get_config(
        self.model_path,
        trust_remote_code=self.trust_remote_code,
        revision=self.revision,
        model_override_args=json.loads(self.json_model_override_args),
        **kwargs,
    )
    arch = hf_config.architectures[0]

1899
1900
1901
1902
1903
    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
1904
        return (3, 1, 4)
1905
1906
1907
1908
1909
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)