server_args.py 49.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15
"""The arguments of the server."""

Lianmin Zheng's avatar
Lianmin Zheng committed
16
17
import argparse
import dataclasses
18
import json
19
import logging
20
import os
21
import random
22
23
import tempfile
from typing import List, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
24

25
from sglang.srt.hf_transformers_utils import check_gguf_file
Xihuai Wang's avatar
Xihuai Wang committed
26
from sglang.srt.reasoning_parser import ReasoningParser
27
from sglang.srt.utils import (
Vincent's avatar
Vincent committed
28
    configure_ipv6,
HAI's avatar
HAI committed
29
    get_amdgpu_memory_capacity,
30
    get_device,
31
    get_hpu_memory_capacity,
HAI's avatar
HAI committed
32
    get_nvgpu_memory_capacity,
33
    is_cuda,
34
    is_flashinfer_available,
HAI's avatar
HAI committed
35
    is_hip,
36
    is_port_available,
37
    is_remote_url,
38
    is_valid_ipv6_address,
bjmsong's avatar
bjmsong committed
39
    nullable_str,
40
)
41

42
43
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
44
45
46

@dataclasses.dataclass
class ServerArgs:
Lianmin Zheng's avatar
Lianmin Zheng committed
47
    # Model and tokenizer
Lianmin Zheng's avatar
Lianmin Zheng committed
48
49
50
    model_path: str
    tokenizer_path: Optional[str] = None
    tokenizer_mode: str = "auto"
51
    skip_tokenizer_init: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
52
    load_format: str = "auto"
53
    trust_remote_code: bool = False
Lianmin Zheng's avatar
Lianmin Zheng committed
54
    dtype: str = "auto"
55
    kv_cache_dtype: str = "auto"
Lianmin Zheng's avatar
Lianmin Zheng committed
56
    quantization: Optional[str] = None
Vincent's avatar
Vincent committed
57
    quantization_param_path: Optional[str] = None
58
    context_length: Optional[int] = None
59
    device: Optional[str] = None
60
    served_model_name: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
61
    chat_template: Optional[str] = None
62
    completion_template: Optional[str] = None
63
    is_embedding: bool = False
64
    revision: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    # Port for the HTTP server
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68
69
70
    host: str = "127.0.0.1"
    port: int = 30000

    # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
71
    mem_fraction_static: Optional[float] = None
72
    max_running_requests: Optional[int] = None
73
    max_total_tokens: Optional[int] = None
74
    chunked_prefill_size: Optional[int] = None
75
    max_prefill_tokens: int = 16384
76
    schedule_policy: str = "fcfs"
77
    schedule_conservativeness: float = 1.0
78
    cpu_offload_gb: int = 0
79
    page_size: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
80
81
82

    # Other runtime options
    tp_size: int = 1
83
    stream_interval: int = 1
84
    stream_output: bool = False
85
    random_seed: Optional[int] = None
86
    constrained_json_whitespace_pattern: Optional[str] = None
87
    watchdog_timeout: float = 300
88
    dist_timeout: Optional[int] = None  # timeout for torch.distributed
89
    download_dir: Optional[str] = None
90
    base_gpu_id: int = 0
91
    gpu_id_step: int = 1
Lianmin Zheng's avatar
Lianmin Zheng committed
92
93
94

    # Logging
    log_level: str = "info"
95
    log_level_http: Optional[str] = None
96
    log_requests: bool = False
97
    log_requests_level: int = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
98
    show_time_cost: bool = False
99
    enable_metrics: bool = False
100
    decode_log_interval: int = 40
Liangsheng Yin's avatar
Liangsheng Yin committed
101

102
    # API related
103
    api_key: Optional[str] = None
104
    file_storage_path: str = "sglang_storage"
105
    enable_cache_report: bool = False
Xihuai Wang's avatar
Xihuai Wang committed
106
    reasoning_parser: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
107

108
109
110
    # Data parallelism
    dp_size: int = 1
    load_balance_method: str = "round_robin"
111

xiaobochen's avatar
xiaobochen committed
112
113
    # Expert parallelism
    ep_size: int = 1
114

115
    # Multi-node distributed serving
116
    dist_init_addr: Optional[str] = None
Lianmin Zheng's avatar
Lianmin Zheng committed
117
    nnodes: int = 1
118
    node_rank: int = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
119
120
121
122

    # Model override args in JSON
    json_model_override_args: str = "{}"

123
124
125
    # LoRA
    lora_paths: Optional[List[str]] = None
    max_loras_per_batch: int = 8
126
    lora_backend: str = "triton"
127
128

    # Kernel backend
129
130
    attention_backend: Optional[str] = None
    sampling_backend: Optional[str] = None
131
    grammar_backend: Optional[str] = "xgrammar"
132

133
134
    # Speculative decoding
    speculative_algorithm: Optional[str] = None
135
    speculative_draft_model_path: Optional[str] = None
136
137
138
    speculative_num_steps: Optional[int] = None
    speculative_eagle_topk: Optional[int] = None
    speculative_num_draft_tokens: Optional[int] = None
139
140
    speculative_accept_threshold_single: float = 1.0
    speculative_accept_threshold_acc: float = 1.0
141
    speculative_token_map: Optional[str] = None
142
143
144

    # Double Sparsity
    enable_double_sparsity: bool = False
Vincent's avatar
Vincent committed
145
    ds_channel_config_path: Optional[str] = None
146
147
148
149
150
    ds_heavy_channel_num: int = 32
    ds_heavy_token_num: int = 256
    ds_heavy_channel_type: str = "qk"
    ds_sparse_decode_threshold: int = 4096

151
    # Optimization/debug options
Lianmin Zheng's avatar
Lianmin Zheng committed
152
    disable_radix_cache: bool = False
153
    disable_cuda_graph: bool = False
154
    disable_cuda_graph_padding: bool = False
155
    enable_nccl_nvls: bool = False
156
    disable_outlines_disk_cache: bool = False
157
    disable_custom_all_reduce: bool = False
Ke Bao's avatar
Ke Bao committed
158
    disable_mla: bool = False
159
    disable_overlap_schedule: bool = False
160
    enable_mixed_chunk: bool = False
Ke Bao's avatar
Ke Bao committed
161
    enable_dp_attention: bool = False
xiaobochen's avatar
xiaobochen committed
162
    enable_ep_moe: bool = False
163
    enable_deepep_moe: bool = False
164
    enable_torch_compile: bool = False
165
    torch_compile_max_bs: int = 32
166
    cuda_graph_max_bs: Optional[int] = None
167
    cuda_graph_bs: Optional[List[int]] = None
168
    torchao_config: str = ""
169
    enable_nan_detection: bool = False
170
    enable_p2p_check: bool = False
171
    triton_attention_reduce_in_fp32: bool = False
172
    triton_attention_num_kv_splits: int = 8
173
    num_continuous_decode_steps: int = 1
174
    delete_ckpt_after_loading: bool = False
175
    enable_memory_saver: bool = False
176
    allow_auto_truncate: bool = False
177
    enable_custom_logit_processor: bool = False
Vincent's avatar
Vincent committed
178
    tool_call_parser: Optional[str] = None
179
    enable_hierarchical_cache: bool = False
180
    hicache_ratio: float = 2.0
181
    enable_flashinfer_mla: bool = False
lukec's avatar
lukec committed
182
    enable_flashmla: bool = False
183
    flashinfer_mla_disable_ragged: bool = False
184
185
186
187
188
189
    warmups: Optional[str] = None

    # Debug tensor dumps
    debug_tensor_dump_output_folder: Optional[str] = None
    debug_tensor_dump_input_file: Optional[str] = None
    debug_tensor_dump_inject: bool = False
190

Byron Hsu's avatar
Byron Hsu committed
191
192
193
194
    # For PD disaggregation: can be "null" (not disaggregated), "prefill" (prefill-only), or "decode" (decode-only)
    disaggregation_mode: str = "null"
    disaggregation_bootstrap_port: int = 8998

Lianmin Zheng's avatar
Lianmin Zheng committed
195
    def __post_init__(self):
196
        # Set missing default values
Lianmin Zheng's avatar
Lianmin Zheng committed
197
198
        if self.tokenizer_path is None:
            self.tokenizer_path = self.model_path
199

200
201
202
        if self.device is None:
            self.device = get_device()

203
204
205
        if self.served_model_name is None:
            self.served_model_name = self.model_path

206
207
208
        if self.random_seed is None:
            self.random_seed = random.randint(0, 1 << 30)

209
        if is_cuda():
210
            gpu_mem = get_nvgpu_memory_capacity()
211
212
        elif is_hip():
            gpu_mem = get_amdgpu_memory_capacity()
213
214
        elif self.device == "hpu":
            gpu_mem = get_hpu_memory_capacity()
215
216
217
        else:
            # GPU memory is not known yet or no GPU is available.
            gpu_mem = None
218
219

        # Set mem fraction static, which depends on the tensor parallelism size
Lianmin Zheng's avatar
Lianmin Zheng committed
220
        if self.mem_fraction_static is None:
221
            if self.tp_size >= 16:
222
                self.mem_fraction_static = 0.79
223
            elif self.tp_size >= 8:
224
                self.mem_fraction_static = 0.81
Lianmin Zheng's avatar
Lianmin Zheng committed
225
            elif self.tp_size >= 4:
226
                self.mem_fraction_static = 0.85
Lianmin Zheng's avatar
Lianmin Zheng committed
227
            elif self.tp_size >= 2:
228
                self.mem_fraction_static = 0.87
Ying Sheng's avatar
Ying Sheng committed
229
            else:
230
                self.mem_fraction_static = 0.88
231

232
233
        # Set chunked prefill size, which depends on the gpu memory capacity
        if self.chunked_prefill_size is None:
234
            if gpu_mem is not None and gpu_mem < 25_000:
235
236
237
                self.chunked_prefill_size = 2048
            else:
                self.chunked_prefill_size = 8192
238

Lianmin Zheng's avatar
Lianmin Zheng committed
239
240
        assert self.chunked_prefill_size % self.page_size == 0

lukec's avatar
lukec committed
241
        if self.enable_flashmla is True:
242
243
244
245
            logger.warning(
                "FlashMLA only supports a page_size of 64, change page_size to 64."
            )
            self.page_size = 64
246
247
        # Set cuda graph max batch size
        if self.cuda_graph_max_bs is None:
248
            # Based on detailed statistics, when serving TP1/TP2 models on lower-end GPUs with HBM<25G, you can either disable cuda graph or set `cuda_graph_max_bs` to a very small value to reduce the memory overhead of creating cuda graphs, with almost no impact on performance. However, when serving models with TP4 or TP8, we need to enable cuda graph to maintain high performance. In this case, we can set `cuda_graph_max_bs` to 80 (half of the default value 160) to reduce the memory overhead of creating cuda graphs. Looking at the logs from TP4 serving of qwen2-72b, a value of 80 is sufficient and can reduce the memory overhead of creating cuda graphs on lower-end GPUs compared to the original 160, avoiding OOM issues.
249
            if gpu_mem is not None and gpu_mem < 25_000:
250
251
252
253
                if self.tp_size < 4:
                    self.cuda_graph_max_bs = 8
                else:
                    self.cuda_graph_max_bs = 80
254
255
            else:
                self.cuda_graph_max_bs = 160
256

257
        # Choose kernel backends
258
259
260
261
        if self.device == "hpu":
            self.attention_backend = "torch_native"
            self.sampling_backend = "pytorch"

262
        if self.attention_backend is None:
263
264
265
            self.attention_backend = (
                "flashinfer" if is_flashinfer_available() else "triton"
            )
266
        if self.sampling_backend is None:
267
268
269
270
271
            self.sampling_backend = (
                "flashinfer" if is_flashinfer_available() else "pytorch"
            )

        if self.attention_backend == "torch_native":
272
            logger.warning(
273
274
275
                "Cuda graph is disabled because of using torch native attention backend"
            )
            self.disable_cuda_graph = True
276

277
278
279
280
281
282
283
        # Expert parallelism
        if self.enable_ep_moe:
            self.ep_size = self.tp_size
            logger.info(
                f"EP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )

284
        # Data parallelism attention
Ke Bao's avatar
Ke Bao committed
285
        if self.enable_dp_attention:
286
            self.schedule_conservativeness = self.schedule_conservativeness * 0.3
Lianmin Zheng's avatar
Lianmin Zheng committed
287
288
289
290
291
            assert (
                self.dp_size > 1
            ), "Please set a dp-size > 1. You can use 1 < dp-size <= tp-size "
            assert self.tp_size % self.dp_size == 0
            self.chunked_prefill_size = self.chunked_prefill_size // self.dp_size
292
            logger.warning(
293
                f"DP attention is enabled. The chunked prefill size is adjusted to {self.chunked_prefill_size} to avoid MoE kernel issues. "
294
            )
295
296
297
298
299
300
301
302
303
304
305

        self.enable_sp_layernorm = False
        # DeepEP MoE
        if self.enable_deepep_moe:
            self.ep_size = self.tp_size
            self.enable_sp_layernorm = (
                self.dp_size < self.tp_size if self.enable_dp_attention else True
            )
            logger.info(
                f"DeepEP MoE is enabled. The expert parallel size is adjusted to be the same as the tensor parallel size[{self.tp_size}]."
            )
306

307
        # Speculative Decoding
308
309
310
311
        if self.speculative_algorithm == "NEXTN":
            # NEXTN shares the same implementation of EAGLE
            self.speculative_algorithm = "EAGLE"

James Liu's avatar
James Liu committed
312
313
314
315
        if (
            self.speculative_algorithm == "EAGLE"
            or self.speculative_algorithm == "EAGLE3"
        ):
316
            if self.max_running_requests is None:
317
                self.max_running_requests = 48
318
            self.disable_overlap_schedule = True
319
            logger.info(
320
                "Overlap scheduler is disabled because of using "
321
                "eagle speculative decoding."
322
            )
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339

            # Auto choose parameters
            if self.speculative_num_steps is None:
                assert (
                    self.speculative_eagle_topk is None
                    and self.speculative_num_draft_tokens is None
                )
                (
                    self.speculative_num_steps,
                    self.speculative_eagle_topk,
                    self.speculative_num_draft_tokens,
                ) = auto_choose_speculative_params(self)

            if self.page_size > 1 and self.speculative_eagle_topk > 1:
                self.speculative_eagle_topk = 1
                logger.info("speculative_eagle_topk is changed to 1 when page_size > 1")

340
            # The token generated from the verify step is counted.
341
            # If sepculative_num_steps >= speculative_num_draft_tokens, the additional tokens will definitely be discarded.
342
            # assert self.speculative_num_steps < self.speculative_num_draft_tokens
343

344
345
346
347
348
349
        # GGUF
        if (
            self.load_format == "auto" or self.load_format == "gguf"
        ) and check_gguf_file(self.model_path):
            self.quantization = self.load_format = "gguf"

350
351
352
        if is_remote_url(self.model_path):
            self.load_format = "remote"

353
354
355
356
        # AMD-specific Triton attention KV splits default number
        if is_hip():
            self.triton_attention_num_kv_splits = 16

Byron Hsu's avatar
Byron Hsu committed
357
358
359
360
361
362
363
364
365
366
367
368
        # PD disaggregation
        if self.disaggregation_mode == "prefill":
            self.disable_cuda_graph = True
            logger.warning("KV cache is forced as chunk cache for decode server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for prefill server")
        elif self.disaggregation_mode == "decode":
            self.disable_radix_cache = True
            logger.warning("Cuda graph is disabled for prefill server")
            self.disable_overlap_schedule = True
            logger.warning("Overlap scheduler is disabled for decode server")

369
370
371
372
        os.environ["SGLANG_ENABLE_TORCH_COMPILE"] = (
            "1" if self.enable_torch_compile else "0"
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
373
374
    @staticmethod
    def add_cli_args(parser: argparse.ArgumentParser):
375
        # Model and port args
Lianmin Zheng's avatar
Lianmin Zheng committed
376
377
378
379
380
381
382
383
384
385
386
387
        parser.add_argument(
            "--model-path",
            type=str,
            help="The path of the model weights. This can be a local folder or a Hugging Face repo ID.",
            required=True,
        )
        parser.add_argument(
            "--tokenizer-path",
            type=str,
            default=ServerArgs.tokenizer_path,
            help="The path of the tokenizer.",
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
388
389
390
391
392
393
        parser.add_argument(
            "--host", type=str, default=ServerArgs.host, help="The host of the server."
        )
        parser.add_argument(
            "--port", type=int, default=ServerArgs.port, help="The port of the server."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
394
395
396
397
398
399
400
401
402
        parser.add_argument(
            "--tokenizer-mode",
            type=str,
            default=ServerArgs.tokenizer_mode,
            choices=["auto", "slow"],
            help="Tokenizer mode. 'auto' will use the fast "
            "tokenizer if available, and 'slow' will "
            "always use the slow tokenizer.",
        )
403
404
405
406
407
        parser.add_argument(
            "--skip-tokenizer-init",
            action="store_true",
            help="If set, skip init tokenizer and pass input_ids in generate request",
        )
408
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
409
410
411
            "--load-format",
            type=str,
            default=ServerArgs.load_format,
412
413
414
415
416
417
            choices=[
                "auto",
                "pt",
                "safetensors",
                "npcache",
                "dummy",
418
                "sharded_state",
419
420
                "gguf",
                "bitsandbytes",
421
                "layered",
422
                "remote",
423
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
424
425
426
427
428
429
430
431
432
            help="The format of the model weights to load. "
            '"auto" will try to load the weights in the safetensors format '
            "and fall back to the pytorch bin format if safetensors format "
            "is not available. "
            '"pt" will load the weights in the pytorch bin format. '
            '"safetensors" will load the weights in the safetensors format. '
            '"npcache" will load the weights in pytorch format and store '
            "a numpy cache to speed up the loading. "
            '"dummy" will initialize the weights with random values, '
433
            "which is mainly for profiling."
434
435
            '"gguf" will load the weights in the gguf format. '
            '"bitsandbytes" will load the weights using bitsandbytes '
436
437
438
439
            "quantization."
            '"layered" loads weights layer by layer so that one can quantize a '
            "layer before loading another to make the peak memory envelope "
            "smaller.",
Lianmin Zheng's avatar
Lianmin Zheng committed
440
        )
441
442
443
444
445
        parser.add_argument(
            "--trust-remote-code",
            action="store_true",
            help="Whether or not to allow for custom models defined on the Hub in their own modeling files.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
446
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
447
            "--dtype",
Cody Yu's avatar
Cody Yu committed
448
            type=str,
Lianmin Zheng's avatar
Lianmin Zheng committed
449
            default=ServerArgs.dtype,
Ying Sheng's avatar
Ying Sheng committed
450
451
            choices=["auto", "half", "float16", "bfloat16", "float", "float32"],
            help="Data type for model weights and activations.\n\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
452
            '* "auto" will use FP16 precision for FP32 and FP16 models, and '
Ying Sheng's avatar
Ying Sheng committed
453
            "BF16 precision for BF16 models.\n"
Lianmin Zheng's avatar
Lianmin Zheng committed
454
455
456
457
            '* "half" for FP16. Recommended for AWQ quantization.\n'
            '* "float16" is the same as "half".\n'
            '* "bfloat16" for a balance between precision and range.\n'
            '* "float" is shorthand for FP32 precision.\n'
Ying Sheng's avatar
Ying Sheng committed
458
459
            '* "float32" for FP32 precision.',
        )
460
461
462
463
        parser.add_argument(
            "--kv-cache-dtype",
            type=str,
            default=ServerArgs.kv_cache_dtype,
bjmsong's avatar
bjmsong committed
464
465
466
            choices=["auto", "fp8_e5m2", "fp8_e4m3"],
            help='Data type for kv cache storage. "auto" will use model data type. "fp8_e5m2" and "fp8_e4m3" is supported for CUDA 11.8+.',
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
467
468
469
470
        parser.add_argument(
            "--quantization",
            type=str,
            default=ServerArgs.quantization,
Ying Sheng's avatar
Ying Sheng committed
471
472
473
474
475
476
            choices=[
                "awq",
                "fp8",
                "gptq",
                "marlin",
                "gptq_marlin",
Ying Sheng's avatar
Ying Sheng committed
477
                "awq_marlin",
Ying Sheng's avatar
Ying Sheng committed
478
                "bitsandbytes",
479
                "gguf",
480
                "modelopt",
481
                "w8a8_int8",
HandH1998's avatar
HandH1998 committed
482
                "w8a8_fp8",
Ying Sheng's avatar
Ying Sheng committed
483
            ],
Lianmin Zheng's avatar
Lianmin Zheng committed
484
485
            help="The quantization method.",
        )
486
487
488
489
490
491
492
493
494
        parser.add_argument(
            "--quantization-param-path",
            type=nullable_str,
            default=None,
            help="Path to the JSON file containing the KV cache "
            "scaling factors. This should generally be supplied, when "
            "KV cache dtype is FP8. Otherwise, KV cache scaling factors "
            "default to 1.0, which may cause accuracy issues. ",
        )
495
496
497
498
499
500
501
502
503
        parser.add_argument(
            "--context-length",
            type=int,
            default=ServerArgs.context_length,
            help="The model's maximum context length. Defaults to None (will use the value from the model's config.json instead).",
        )
        parser.add_argument(
            "--device",
            type=str,
504
505
            default=ServerArgs.device,
            help="The device to use ('cuda', 'xpu', 'hpu', 'cpu'). Defaults to auto-detection if not specified.",
506
        )
507
508
509
510
511
512
        parser.add_argument(
            "--served-model-name",
            type=str,
            default=ServerArgs.served_model_name,
            help="Override the model name returned by the v1/models endpoint in OpenAI API server.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
513
514
515
516
517
518
        parser.add_argument(
            "--chat-template",
            type=str,
            default=ServerArgs.chat_template,
            help="The buliltin chat template name or the path of the chat template file. This is only used for OpenAI-compatible API server.",
        )
519
520
521
522
523
524
        parser.add_argument(
            "--completion-template",
            type=str,
            default=ServerArgs.completion_template,
            help="The buliltin completion template name or the path of the completion template file. This is only used for OpenAI-compatible API server. only for code completion currently.",
        )
525
526
527
528
529
        parser.add_argument(
            "--is-embedding",
            action="store_true",
            help="Whether to use a CausalLM as an embedding model.",
        )
530
531
532
533
534
535
536
537
        parser.add_argument(
            "--revision",
            type=str,
            default=None,
            help="The specific model version to use. It can be a branch "
            "name, a tag name, or a commit id. If unspecified, will use "
            "the default version.",
        )
538
        # Memory and scheduling
Lianmin Zheng's avatar
Lianmin Zheng committed
539
540
541
542
        parser.add_argument(
            "--mem-fraction-static",
            type=float,
            default=ServerArgs.mem_fraction_static,
543
            help="The fraction of the memory used for static allocation (model weights and KV cache memory pool). Use a smaller value if you see out-of-memory errors.",
Lianmin Zheng's avatar
Lianmin Zheng committed
544
        )
545
546
547
548
549
550
        parser.add_argument(
            "--max-running-requests",
            type=int,
            default=ServerArgs.max_running_requests,
            help="The maximum number of running requests.",
        )
551
552
553
554
        parser.add_argument(
            "--max-total-tokens",
            type=int,
            default=ServerArgs.max_total_tokens,
555
556
            help="The maximum number of tokens in the memory pool. If not specified, it will be automatically calculated based on the memory usage fraction. "
            "This option is typically used for development and debugging purposes.",
557
        )
558
559
560
561
        parser.add_argument(
            "--chunked-prefill-size",
            type=int,
            default=ServerArgs.chunked_prefill_size,
562
            help="The maximum number of tokens in a chunk for the chunked prefill. Setting this to -1 means disabling chunked prefill.",
563
564
565
566
567
568
569
        )
        parser.add_argument(
            "--max-prefill-tokens",
            type=int,
            default=ServerArgs.max_prefill_tokens,
            help="The maximum number of tokens in a prefill batch. The real bound will be the maximum of this value and the model's maximum context length.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
570
        parser.add_argument(
571
            "--schedule-policy",
Lianmin Zheng's avatar
Lianmin Zheng committed
572
            type=str,
573
            default=ServerArgs.schedule_policy,
Liangsheng Yin's avatar
Liangsheng Yin committed
574
            choices=["lpm", "random", "fcfs", "dfs-weight"],
575
            help="The scheduling policy of the requests.",
Lianmin Zheng's avatar
Lianmin Zheng committed
576
        )
577
578
579
580
        parser.add_argument(
            "--schedule-conservativeness",
            type=float,
            default=ServerArgs.schedule_conservativeness,
581
            help="How conservative the schedule policy is. A larger value means more conservative scheduling. Use a larger value if you see requests being retracted frequently.",
582
        )
583
584
585
586
        parser.add_argument(
            "--cpu-offload-gb",
            type=int,
            default=ServerArgs.cpu_offload_gb,
587
            help="How many GBs of RAM to reserve for CPU offloading.",
588
        )
589
590
591
592
593
594
        parser.add_argument(
            "--page-size",
            type=int,
            default=ServerArgs.page_size,
            help="The number of tokens in a page.",
        )
595

596
        # Other runtime options
Lianmin Zheng's avatar
Lianmin Zheng committed
597
        parser.add_argument(
598
            "--tensor-parallel-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
599
            "--tp-size",
Lianmin Zheng's avatar
Lianmin Zheng committed
600
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
601
            default=ServerArgs.tp_size,
602
            help="The tensor parallelism size.",
603
        )
604
605
606
        parser.add_argument(
            "--stream-interval",
            type=int,
Lianmin Zheng's avatar
Lianmin Zheng committed
607
            default=ServerArgs.stream_interval,
608
            help="The interval (or buffer size) for streaming in terms of the token length. A smaller value makes streaming smoother, while a larger value makes the throughput higher",
609
        )
610
611
612
613
614
        parser.add_argument(
            "--stream-output",
            action="store_true",
            help="Whether to output as a sequence of disjoint segments.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
615
616
617
618
        parser.add_argument(
            "--random-seed",
            type=int,
            default=ServerArgs.random_seed,
619
            help="The random seed.",
Lianmin Zheng's avatar
Lianmin Zheng committed
620
        )
621
622
623
624
625
626
        parser.add_argument(
            "--constrained-json-whitespace-pattern",
            type=str,
            default=ServerArgs.constrained_json_whitespace_pattern,
            help=r"Regex pattern for syntactic whitespaces allowed in JSON constrained output. For example, to allow the model generate consecutive whitespaces, set the pattern to [\n\t ]*",
        )
627
628
629
630
631
632
        parser.add_argument(
            "--watchdog-timeout",
            type=float,
            default=ServerArgs.watchdog_timeout,
            help="Set watchdog timeout in seconds. If a forward batch takes longer than this, the server will crash to prevent hanging.",
        )
633
634
635
636
637
638
        parser.add_argument(
            "--dist-timeout",
            type=int,
            default=ServerArgs.dist_timeout,
            help="Set timeout for torch.distributed initialization.",
        )
639
640
641
642
        parser.add_argument(
            "--download-dir",
            type=str,
            default=ServerArgs.download_dir,
Lianmin Zheng's avatar
Lianmin Zheng committed
643
            help="Model download directory for huggingface.",
644
        )
645
646
647
648
649
650
        parser.add_argument(
            "--base-gpu-id",
            type=int,
            default=ServerArgs.base_gpu_id,
            help="The base GPU ID to start allocating GPUs from. Useful when running multiple instances on the same machine.",
        )
651
652
653
654
655
656
        parser.add_argument(
            "--gpu-id-step",
            type=int,
            default=ServerArgs.gpu_id_step,
            help="The delta between consecutive GPU IDs that are used. For example, setting it to 2 will use GPU 0,2,4,...",
        )
657
658

        # Logging
Lianmin Zheng's avatar
Lianmin Zheng committed
659
660
661
662
        parser.add_argument(
            "--log-level",
            type=str,
            default=ServerArgs.log_level,
663
            help="The logging level of all loggers.",
Lianmin Zheng's avatar
Lianmin Zheng committed
664
        )
665
        parser.add_argument(
666
667
668
669
            "--log-level-http",
            type=str,
            default=ServerArgs.log_level_http,
            help="The logging level of HTTP server. If not set, reuse --log-level by default.",
670
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
671
        parser.add_argument(
672
            "--log-requests",
Lianmin Zheng's avatar
Lianmin Zheng committed
673
            action="store_true",
674
675
676
677
678
679
680
681
            help="Log metadata, inputs, outputs of all requests. The verbosity is decided by --log-requests-level",
        )
        parser.add_argument(
            "--log-requests-level",
            type=int,
            default=0,
            help="0: Log metadata. 1. Log metadata and partial input/output. 2. Log every input/output.",
            choices=[0, 1, 2],
Lianmin Zheng's avatar
Lianmin Zheng committed
682
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
683
684
685
        parser.add_argument(
            "--show-time-cost",
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
686
            help="Show time cost of custom marks.",
Lianmin Zheng's avatar
Lianmin Zheng committed
687
        )
688
689
690
691
692
        parser.add_argument(
            "--enable-metrics",
            action="store_true",
            help="Enable log prometheus metrics.",
        )
693
694
695
696
        parser.add_argument(
            "--decode-log-interval",
            type=int,
            default=ServerArgs.decode_log_interval,
697
            help="The log interval of decode batch.",
698
        )
699

700
        # API related
Liangsheng Yin's avatar
Liangsheng Yin committed
701
702
703
704
        parser.add_argument(
            "--api-key",
            type=str,
            default=ServerArgs.api_key,
705
            help="Set API key of the server. It is also used in the OpenAI API compatible server.",
Liangsheng Yin's avatar
Liangsheng Yin committed
706
        )
707
        parser.add_argument(
708
            "--file-storage-path",
709
            type=str,
710
            default=ServerArgs.file_storage_path,
711
712
            help="The path of the file storage in backend.",
        )
713
714
715
716
717
        parser.add_argument(
            "--enable-cache-report",
            action="store_true",
            help="Return number of cached tokens in usage.prompt_tokens_details for each openai request.",
        )
Xihuai Wang's avatar
Xihuai Wang committed
718
719
720
721
722
723
724
        parser.add_argument(
            "--reasoning-parser",
            type=str,
            choices=list(ReasoningParser.DetectorMap.keys()),
            default=ServerArgs.reasoning_parser,
            help=f"Specify the parser for reasoning models, supported parsers are: {list(ReasoningParser.DetectorMap.keys())}.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
725

726
727
        # Data parallelism
        parser.add_argument(
728
            "--data-parallel-size",
729
730
731
            "--dp-size",
            type=int,
            default=ServerArgs.dp_size,
732
            help="The data parallelism size.",
733
734
735
736
737
        )
        parser.add_argument(
            "--load-balance-method",
            type=str,
            default=ServerArgs.load_balance_method,
738
            help="The load balancing strategy for data parallelism.",
739
740
741
742
743
            choices=[
                "round_robin",
                "shortest_queue",
            ],
        )
744

xiaobochen's avatar
xiaobochen committed
745
746
747
748
749
750
751
752
        # Expert parallelism
        parser.add_argument(
            "--expert-parallel-size",
            "--ep-size",
            type=int,
            default=ServerArgs.ep_size,
            help="The expert parallelism size.",
        )
753

754
        # Multi-node distributed serving
755
        parser.add_argument(
756
757
            "--dist-init-addr",
            "--nccl-init-addr",  # For backward compatbility. This will be removed in the future.
758
            type=str,
759
            help="The host address for initializing distributed backend (e.g., `192.168.0.2:25000`).",
760
761
        )
        parser.add_argument(
Liangsheng Yin's avatar
Liangsheng Yin committed
762
            "--nnodes", type=int, default=ServerArgs.nnodes, help="The number of nodes."
763
        )
764
765
766
        parser.add_argument(
            "--node-rank", type=int, default=ServerArgs.node_rank, help="The node rank."
        )
767

Lianmin Zheng's avatar
Lianmin Zheng committed
768
769
770
771
772
773
774
775
        # Model override args
        parser.add_argument(
            "--json-model-override-args",
            type=str,
            help="A dictionary in JSON string format used to override default model configurations.",
            default=ServerArgs.json_model_override_args,
        )

776
777
778
779
780
781
782
        # LoRA
        parser.add_argument(
            "--lora-paths",
            type=str,
            nargs="*",
            default=None,
            action=LoRAPathAction,
783
            help="The list of LoRA adapters. You can provide a list of either path in str or renamed path in the format {name}={path}.",
784
785
786
787
788
        )
        parser.add_argument(
            "--max-loras-per-batch",
            type=int,
            default=8,
789
790
791
792
793
794
795
            help="Maximum number of adapters for a running batch, include base-only request.",
        )
        parser.add_argument(
            "--lora-backend",
            type=str,
            default="triton",
            help="Choose the kernel backend for multi-LoRA serving.",
796
797
798
        )

        # Kernel backend
799
800
801
        parser.add_argument(
            "--attention-backend",
            type=str,
802
            choices=["flashinfer", "triton", "torch_native", "fa3"],
803
804
805
            default=ServerArgs.attention_backend,
            help="Choose the kernels for attention layers.",
        )
806
807
808
809
810
811
812
        parser.add_argument(
            "--sampling-backend",
            type=str,
            choices=["flashinfer", "pytorch"],
            default=ServerArgs.sampling_backend,
            help="Choose the kernels for sampling layers.",
        )
813
814
815
        parser.add_argument(
            "--grammar-backend",
            type=str,
816
            choices=["xgrammar", "outlines", "llguidance"],
817
            default=ServerArgs.grammar_backend,
Lianmin Zheng's avatar
Lianmin Zheng committed
818
            help="Choose the backend for grammar-guided decoding.",
819
        )
820
821
822
823
824
        parser.add_argument(
            "--enable-flashinfer-mla",
            action="store_true",
            help="Enable FlashInfer MLA optimization",
        )
lukec's avatar
lukec committed
825
826
827
828
829
        parser.add_argument(
            "--enable-flashmla",
            action="store_true",
            help="Enable FlashMLA decode optimization",
        )
830
831
832
833
834
        parser.add_argument(
            "--flashinfer-mla-disable-ragged",
            action="store_true",
            help="Not using ragged prefill wrapper when running flashinfer mla",
        )
835

836
837
838
839
        # Speculative decoding
        parser.add_argument(
            "--speculative-algorithm",
            type=str,
James Liu's avatar
James Liu committed
840
            choices=["EAGLE", "EAGLE3", "NEXTN"],
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
            help="Speculative algorithm.",
        )
        parser.add_argument(
            "--speculative-draft-model-path",
            type=str,
            help="The path of the draft model weights. This can be a local folder or a Hugging Face repo ID.",
        )
        parser.add_argument(
            "--speculative-num-steps",
            type=int,
            help="The number of steps sampled from draft model in Speculative Decoding.",
            default=ServerArgs.speculative_num_steps,
        )
        parser.add_argument(
            "--speculative-eagle-topk",
            type=int,
857
            help="The number of tokens sampled from the draft model in eagle2 each step.",
858
859
            default=ServerArgs.speculative_eagle_topk,
        )
860
861
862
        parser.add_argument(
            "--speculative-num-draft-tokens",
            type=int,
863
            help="The number of tokens sampled from the draft model in Speculative Decoding.",
864
865
            default=ServerArgs.speculative_num_draft_tokens,
        )
866
867
868
869
870
871
872
873
874
875
876
877
        parser.add_argument(
            "--speculative-accept-threshold-single",
            type=float,
            help="Accept a draft token if its probability in the target model is greater than this threshold.",
            default=ServerArgs.speculative_accept_threshold_single,
        )
        parser.add_argument(
            "--speculative-accept-threshold-acc",
            type=float,
            help="The accept probability of a draft token is raised from its target probability p to min(1, p / threshold_acc).",
            default=ServerArgs.speculative_accept_threshold_acc,
        )
878
879
880
881
882
883
        parser.add_argument(
            "--speculative-token-map",
            type=str,
            help="The path of the draft model's small vocab table.",
            default=ServerArgs.speculative_token_map,
        )
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921

        # Double Sparsity
        parser.add_argument(
            "--enable-double-sparsity",
            action="store_true",
            help="Enable double sparsity attention",
        )
        parser.add_argument(
            "--ds-channel-config-path",
            type=str,
            default=ServerArgs.ds_channel_config_path,
            help="The path of the double sparsity channel config",
        )
        parser.add_argument(
            "--ds-heavy-channel-num",
            type=int,
            default=ServerArgs.ds_heavy_channel_num,
            help="The number of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-token-num",
            type=int,
            default=ServerArgs.ds_heavy_token_num,
            help="The number of heavy tokens in double sparsity attention",
        )
        parser.add_argument(
            "--ds-heavy-channel-type",
            type=str,
            default=ServerArgs.ds_heavy_channel_type,
            help="The type of heavy channels in double sparsity attention",
        )
        parser.add_argument(
            "--ds-sparse-decode-threshold",
            type=int,
            default=ServerArgs.ds_sparse_decode_threshold,
            help="The type of heavy channels in double sparsity attention",
        )

922
        # Optimization/debug options
Liangsheng Yin's avatar
Liangsheng Yin committed
923
        parser.add_argument(
Lianmin Zheng's avatar
Lianmin Zheng committed
924
            "--disable-radix-cache",
Liangsheng Yin's avatar
Liangsheng Yin committed
925
            action="store_true",
Ying Sheng's avatar
Ying Sheng committed
926
            help="Disable RadixAttention for prefix caching.",
Liangsheng Yin's avatar
Liangsheng Yin committed
927
        )
928
929
930
931
932
        parser.add_argument(
            "--disable-cuda-graph",
            action="store_true",
            help="Disable cuda graph.",
        )
933
        parser.add_argument(
934
935
936
937
            "--disable-cuda-graph-padding",
            action="store_true",
            help="Disable cuda graph when padding is needed. Still uses cuda graph when padding is not needed.",
        )
938
939
940
941
942
        parser.add_argument(
            "--enable-nccl-nvls",
            action="store_true",
            help="Enable NCCL NVLS for prefill heavy requests when available.",
        )
943
        parser.add_argument(
944
            "--disable-outlines-disk-cache",
945
            action="store_true",
946
            help="Disable disk cache of outlines to avoid possible crashes related to file system or high concurrency.",
947
        )
948
949
950
951
952
        parser.add_argument(
            "--disable-custom-all-reduce",
            action="store_true",
            help="Disable the custom all-reduce kernel and fall back to NCCL.",
        )
Ke Bao's avatar
Ke Bao committed
953
954
955
        parser.add_argument(
            "--disable-mla",
            action="store_true",
Xiaoyu Zhang's avatar
Xiaoyu Zhang committed
956
            help="Disable Multi-head Latent Attention (MLA) for DeepSeek V2/V3/R1 series models.",
Ke Bao's avatar
Ke Bao committed
957
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
958
        parser.add_argument(
959
            "--disable-overlap-schedule",
Lianmin Zheng's avatar
Lianmin Zheng committed
960
            action="store_true",
961
            help="Disable the overlap scheduler, which overlaps the CPU scheduler with GPU model worker.",
Lianmin Zheng's avatar
Lianmin Zheng committed
962
        )
963
964
965
        parser.add_argument(
            "--enable-mixed-chunk",
            action="store_true",
966
            help="Enabling mixing prefill and decode in a batch when using chunked prefill.",
967
        )
Ke Bao's avatar
Ke Bao committed
968
969
970
971
972
        parser.add_argument(
            "--enable-dp-attention",
            action="store_true",
            help="Enabling data parallelism for attention and tensor parallelism for FFN. The dp size should be equal to the tp size. Currently only DeepSeek-V2 is supported.",
        )
xiaobochen's avatar
xiaobochen committed
973
974
975
976
977
        parser.add_argument(
            "--enable-ep-moe",
            action="store_true",
            help="Enabling expert parallelism for moe. The ep size is equal to the tp size.",
        )
978
979
980
        parser.add_argument(
            "--enable-torch-compile",
            action="store_true",
981
982
            help="Optimize the model with torch.compile. Experimental feature.",
        )
983
        parser.add_argument(
984
            "--torch-compile-max-bs",
985
            type=int,
986
            default=ServerArgs.torch_compile_max_bs,
987
988
            help="Set the maximum batch size when using torch compile.",
        )
989
        parser.add_argument(
990
            "--cuda-graph-max-bs",
991
            type=int,
992
            default=ServerArgs.cuda_graph_max_bs,
993
994
            help="Set the maximum batch size for cuda graph.",
        )
995
996
997
998
999
1000
        parser.add_argument(
            "--cuda-graph-bs",
            type=int,
            nargs="+",
            help="Set the list of batch sizes for cuda graph.",
        )
1001
1002
1003
1004
        parser.add_argument(
            "--torchao-config",
            type=str,
            default=ServerArgs.torchao_config,
1005
            help="Optimize the model with torchao. Experimental feature. Current choices are: int8dq, int8wo, int4wo-<group_size>, fp8wo, fp8dq-per_tensor, fp8dq-per_row",
1006
        )
1007
1008
1009
1010
1011
        parser.add_argument(
            "--enable-nan-detection",
            action="store_true",
            help="Enable the NaN detection for debugging purposes.",
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
1012
        parser.add_argument(
1013
            "--enable-p2p-check",
Lianmin Zheng's avatar
Lianmin Zheng committed
1014
            action="store_true",
1015
            help="Enable P2P check for GPU access, otherwise the p2p access is allowed by default.",
Lianmin Zheng's avatar
Lianmin Zheng committed
1016
        )
1017
        parser.add_argument(
1018
            "--triton-attention-reduce-in-fp32",
1019
            action="store_true",
1020
            help="Cast the intermidiate attention results to fp32 to avoid possible crashes related to fp16."
1021
            "This only affects Triton attention kernels.",
1022
        )
1023
1024
1025
1026
1027
1028
        parser.add_argument(
            "--triton-attention-num-kv-splits",
            type=int,
            default=ServerArgs.triton_attention_num_kv_splits,
            help="The number of KV splits in flash decoding Triton kernel. Larger value is better in longer context scenarios. The default value is 8.",
        )
1029
1030
1031
1032
1033
1034
1035
1036
        parser.add_argument(
            "--num-continuous-decode-steps",
            type=int,
            default=ServerArgs.num_continuous_decode_steps,
            help="Run multiple continuous decoding steps to reduce scheduling overhead. "
            "This can potentially increase throughput but may also increase time-to-first-token latency. "
            "The default value is 1, meaning only run one decoding step at a time.",
        )
1037
1038
1039
1040
1041
        parser.add_argument(
            "--delete-ckpt-after-loading",
            action="store_true",
            help="Delete the model checkpoint after loading the model.",
        )
1042
1043
1044
1045
1046
        parser.add_argument(
            "--enable-memory-saver",
            action="store_true",
            help="Allow saving memory using release_memory_occupation and resume_memory_occupation",
        )
1047
1048
1049
1050
1051
        parser.add_argument(
            "--allow-auto-truncate",
            action="store_true",
            help="Allow automatically truncating requests that exceed the maximum input length instead of returning an error.",
        )
1052
1053
1054
1055
1056
        parser.add_argument(
            "--enable-custom-logit-processor",
            action="store_true",
            help="Enable users to pass custom logit processors to the server (disabled by default for security)",
        )
YAMY's avatar
YAMY committed
1057
1058
1059
1060
1061
1062
1063
        parser.add_argument(
            "--tool-call-parser",
            type=str,
            choices=["qwen25", "mistral", "llama3"],
            default=ServerArgs.tool_call_parser,
            help="Specify the parser for handling tool-call interactions. Options include: 'qwen25', 'mistral', and 'llama3'.",
        )
1064
1065
1066
1067
1068
        parser.add_argument(
            "--enable-hierarchical-cache",
            action="store_true",
            help="Enable hierarchical cache",
        )
1069
1070
1071
1072
1073
1074
1075
        parser.add_argument(
            "--hicache-ratio",
            type=float,
            required=False,
            default=ServerArgs.hicache_ratio,
            help="The ratio of the size of host KV cache memory pool to the size of device pool.",
        )
1076
1077
1078
1079
1080
        parser.add_argument(
            "--enable-deepep-moe",
            action="store_true",
            help="Enabling DeepEP MoE implementation for EP MoE.",
        )
1081

1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        # Server warmups
        parser.add_argument(
            "--warmups",
            type=str,
            required=False,
            help="Specify custom warmup functions (csv) to run before server starts eg. --warmups=warmup_name1,warmup_name2 "
            "will run the functions `warmup_name1` and `warmup_name2` specified in warmup.py before the server starts listening for requests",
        )

        # Debug tensor dumps
        parser.add_argument(
            "--debug-tensor-dump-output-folder",
            type=str,
            default=ServerArgs.debug_tensor_dump_output_folder,
            help="The output folder for dumping tensors.",
        )
        parser.add_argument(
            "--debug-tensor-dump-input-file",
            type=str,
            default=ServerArgs.debug_tensor_dump_input_file,
            help="The input filename for dumping tensors",
        )
        parser.add_argument(
            "--debug-tensor-dump-inject",
            type=str,
            default=ServerArgs.debug_tensor_dump_inject,
            help="Inject the outputs from jax as the input of every layer.",
        )

Byron Hsu's avatar
Byron Hsu committed
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
        # Disaggregation
        parser.add_argument(
            "--disaggregation-mode",
            type=str,
            default="null",
            choices=["null", "prefill", "decode"],
            help='Only used for PD disaggregation. "prefill" for prefill-only server, and "decode" for decode-only server. If not specified, it is not PD disaggregated',
        )
        parser.add_argument(
            "--disaggregation-bootstrap-port",
            type=int,
            default=ServerArgs.disaggregation_bootstrap_port,
            help="Bootstrap server port on the prefill server. Default is 8998.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
1126
1127
    @classmethod
    def from_cli_args(cls, args: argparse.Namespace):
1128
1129
        args.tp_size = args.tensor_parallel_size
        args.dp_size = args.data_parallel_size
xiaobochen's avatar
xiaobochen committed
1130
        args.ep_size = args.expert_parallel_size
Lianmin Zheng's avatar
Lianmin Zheng committed
1131
1132
1133
1134
        attrs = [attr.name for attr in dataclasses.fields(cls)]
        return cls(**{attr: getattr(args, attr) for attr in attrs})

    def url(self):
1135
        if is_valid_ipv6_address(self.host):
1136
1137
1138
            return f"http://[{self.host}]:{self.port}"
        else:
            return f"http://{self.host}:{self.port}"
Lianmin Zheng's avatar
Lianmin Zheng committed
1139

1140
1141
1142
1143
1144
    def check_server_args(self):
        assert (
            self.tp_size % self.nnodes == 0
        ), "tp_size must be divisible by number of nodes"
        assert not (
1145
1146
            self.dp_size > 1 and self.nnodes != 1 and not self.enable_dp_attention
        ), "multi-node data parallel is not supported unless dp attention!"
1147
1148
1149
1150
1151
1152
        assert (
            self.max_loras_per_batch > 0
            # FIXME
            and (self.lora_paths is None or self.disable_cuda_graph)
            and (self.lora_paths is None or self.disable_radix_cache)
        ), "compatibility of lora and cuda graph and radix attention is in progress"
1153
        assert self.base_gpu_id >= 0, "base_gpu_id must be non-negative"
1154
        assert self.gpu_id_step >= 1, "gpu_id_step must be positive"
1155

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
        if isinstance(self.lora_paths, list):
            lora_paths = self.lora_paths
            self.lora_paths = {}
            for lora_path in lora_paths:
                if "=" in lora_path:
                    name, path = lora_path.split("=", 1)
                    self.lora_paths[name] = path
                else:
                    self.lora_paths[lora_path] = lora_path

Lianmin Zheng's avatar
Lianmin Zheng committed
1166

Lianmin Zheng's avatar
Lianmin Zheng committed
1167
def prepare_server_args(argv: List[str]) -> ServerArgs:
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
    """
    Prepare the server arguments from the command line arguments.

    Args:
        args: The command line arguments. Typically, it should be `sys.argv[1:]`
            to ensure compatibility with `parse_args` when no arguments are passed.

    Returns:
        The server arguments.
    """
    parser = argparse.ArgumentParser()
    ServerArgs.add_cli_args(parser)
Lianmin Zheng's avatar
Lianmin Zheng committed
1180
    raw_args = parser.parse_args(argv)
1181
1182
1183
1184
    server_args = ServerArgs.from_cli_args(raw_args)
    return server_args


1185
1186
1187
ZMQ_TCP_PORT_DELTA = 233


Lianmin Zheng's avatar
Lianmin Zheng committed
1188
1189
@dataclasses.dataclass
class PortArgs:
1190
1191
1192
1193
1194
1195
    # The ipc filename for tokenizer to receive inputs from detokenizer (zmq)
    tokenizer_ipc_name: str
    # The ipc filename for scheduler (rank 0) to receive inputs from tokenizer (zmq)
    scheduler_input_ipc_name: str
    # The ipc filename for detokenizer to receive inputs from scheduler (zmq)
    detokenizer_ipc_name: str
1196

1197
1198
    # The port for nccl initialization (torch.dist)
    nccl_port: int
1199

1200
1201
1202
    # The ipc filename for rpc call between Engine and Scheduler
    rpc_ipc_name: str

1203
    @staticmethod
1204
    def init_new(server_args, dp_rank: Optional[int] = None) -> "PortArgs":
1205
        port = server_args.port + random.randint(100, 1000)
1206
1207
1208
        while True:
            if is_port_available(port):
                break
TianYu GUO's avatar
TianYu GUO committed
1209
1210
1211
1212
            if port < 60000:
                port += 42
            else:
                port -= 43
1213

1214
1215
1216
1217
1218
1219
1220
        if not server_args.enable_dp_attention:
            # Normal case, use IPC within a single node
            return PortArgs(
                tokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                scheduler_input_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                detokenizer_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
                nccl_port=port,
1221
                rpc_ipc_name=f"ipc://{tempfile.NamedTemporaryFile(delete=False).name}",
1222
1223
1224
1225
1226
            )
        else:
            # DP attention. Use TCP + port to handle both single-node and multi-node.
            if server_args.nnodes == 1 and server_args.dist_init_addr is None:
                dist_init_addr = ("127.0.0.1", server_args.port + ZMQ_TCP_PORT_DELTA)
Vincent's avatar
Vincent committed
1227
1228
1229
            elif server_args.dist_init_addr.startswith("["):  # ipv6 address
                port_num, host = configure_ipv6(server_args.dist_init_addr)
                dist_init_addr = (host, str(port_num))
1230
1231
            else:
                dist_init_addr = server_args.dist_init_addr.split(":")
Vincent's avatar
Vincent committed
1232

1233
1234
1235
1236
1237
1238
1239
1240
            assert (
                len(dist_init_addr) == 2
            ), "please provide --dist-init-addr as host:port of head node"

            dist_init_host, dist_init_port = dist_init_addr
            port_base = int(dist_init_port) + 1
            if dp_rank is None:
                scheduler_input_port = (
1241
                    port_base + 3
1242
                )  # TokenizerManager to DataParallelController
1243
            else:
1244
                scheduler_input_port = port_base + 3 + 1 + dp_rank
1245
1246
1247
1248
1249
1250

            return PortArgs(
                tokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base}",
                scheduler_input_ipc_name=f"tcp://{dist_init_host}:{scheduler_input_port}",
                detokenizer_ipc_name=f"tcp://{dist_init_host}:{port_base + 1}",
                nccl_port=port,
1251
                rpc_ipc_name=f"tcp://{dist_init_host}:{port_base + 2}",
1252
            )
1253

1254
1255
1256
1257
1258
1259
1260
1261
1262
1263

class LoRAPathAction(argparse.Action):
    def __call__(self, parser, namespace, values, option_string=None):
        setattr(namespace, self.dest, {})
        for lora_path in values:
            if "=" in lora_path:
                name, path = lora_path.split("=", 1)
                getattr(namespace, self.dest)[name] = path
            else:
                getattr(namespace, self.dest)[lora_path] = lora_path
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273


class DeprecatedAction(argparse.Action):
    def __init__(self, option_strings, dest, nargs=0, **kwargs):
        super(DeprecatedAction, self).__init__(
            option_strings, dest, nargs=nargs, **kwargs
        )

    def __call__(self, parser, namespace, values, option_string=None):
        raise ValueError(self.help)
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303


def auto_choose_speculative_params(self: ServerArgs):
    """
    Automatically choose the parameters for speculative decoding.

    You can tune them on your own models and prompts with scripts/playground/bench_speculative.py
    """
    if self.decrypted_config_file:
        config_path = self.decrypted_config_file
    else:
        config_path = os.path.join(self.model_path, "config.json")
    if not os.path.exists(config_path):
        raise ValueError(f"{config_path} is not found.")

    config = json.load(open(config_path))

    arch = config.get("architectures", ["Unknown"])[0]

    if arch in ["LlamaForCausalLM"]:
        # The default value for llama
        return (5, 4, 8)
    elif arch in ["DeepseekV3ForCausalLM", "DeepseekV2ForCausalLM"]:
        # The default value for deepseek
        return (5, 4, 8)
    elif arch in ["Grok1ForCausalLM", "Grok1VForCausalLM"]:
        return (5, 4, 8)
    else:
        # The default value for all other models
        return (5, 4, 8)