predict_system.py 7.78 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
LDOUBLEV's avatar
LDOUBLEV committed
16
import subprocess
WenmuZhou's avatar
WenmuZhou committed
17

18
__dir__ = os.path.dirname(os.path.abspath(__file__))
19
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
20
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
21

22
23
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
import cv2
import copy
import numpy as np
littletomatodonkey's avatar
littletomatodonkey committed
27
import json
LDOUBLEV's avatar
LDOUBLEV committed
28
import time
WenmuZhou's avatar
WenmuZhou committed
29
import logging
LDOUBLEV's avatar
LDOUBLEV committed
30
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
31
32
33
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
34
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
35
36
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
37
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
WenmuZhou's avatar
WenmuZhou committed
38
39
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
40
41
42

class TextSystem(object):
    def __init__(self, args):
WenmuZhou's avatar
WenmuZhou committed
43
44
45
        if not args.show_log:
            logger.setLevel(logging.INFO)

LDOUBLEV's avatar
LDOUBLEV committed
46
47
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
48
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
49
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
50
51
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
52

53
54
55
56
57
        self.args = args
        self.crop_image_res_index = 0

    def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
        os.makedirs(output_dir, exist_ok=True)
LDOUBLEV's avatar
LDOUBLEV committed
58
59
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
60
61
62
63
64
65
            cv2.imwrite(
                os.path.join(output_dir,
                             f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
                img_crop_list[bno])
            logger.debug(f"{bno}, {rec_res[bno]}")
        self.crop_image_res_index += bbox_num
LDOUBLEV's avatar
LDOUBLEV committed
66

67
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
68
69
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
70

WenmuZhou's avatar
WenmuZhou committed
71
        logger.debug("dt_boxes num : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
72
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
        if dt_boxes is None:
            return None, None
        img_crop_list = []
76
77
78

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
79
80
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
WenmuZhou's avatar
WenmuZhou committed
81
            img_crop = get_rotate_crop_image(ori_im, tmp_box)
LDOUBLEV's avatar
LDOUBLEV committed
82
            img_crop_list.append(img_crop)
83
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
84
85
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
86
            logger.debug("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
87
88
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
89
        rec_res, elapse = self.text_recognizer(img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
90
        logger.debug("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
91
            len(rec_res), elapse))
92
93
94
        if self.args.save_crop_res:
            self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
                                   rec_res)
WenmuZhou's avatar
WenmuZhou committed
95
        filter_boxes, filter_rec_res = [], []
littletomatodonkey's avatar
littletomatodonkey committed
96
97
        for box, rec_result in zip(dt_boxes, rec_res):
            text, score = rec_result
WenmuZhou's avatar
WenmuZhou committed
98
99
            if score >= self.drop_score:
                filter_boxes.append(box)
littletomatodonkey's avatar
littletomatodonkey committed
100
                filter_rec_res.append(rec_result)
WenmuZhou's avatar
WenmuZhou committed
101
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
102
103


104
105
106
107
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
108
        dt_boxes(array):detected text boxes with shape [4, 2]
109
110
111
112
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
113
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
114
115
116
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
WenmuZhou's avatar
WenmuZhou committed
117
118
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
119
120
121
122
123
124
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


125
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
126
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
127
    image_file_list = image_file_list[args.process_id::args.total_process_num]
LDOUBLEV's avatar
LDOUBLEV committed
128
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
129
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
130
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
131
    drop_score = args.drop_score
littletomatodonkey's avatar
littletomatodonkey committed
132
133
134
    draw_img_save_dir = args.draw_img_save_dir
    os.makedirs(draw_img_save_dir, exist_ok=True)
    save_results = []
Double_V's avatar
Double_V committed
135

xiaoting's avatar
xiaoting committed
136
137
138
    logger.info("In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
                "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320")
                
LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
143
    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)
WenmuZhou's avatar
WenmuZhou committed
144

LDOUBLEV's avatar
LDOUBLEV committed
145
146
147
148
149
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
150

LDOUBLEV's avatar
LDOUBLEV committed
151
152
153
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
154
        if img is None:
155
            logger.debug("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
156
157
158
159
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
160
        total_time += elapse
LDOUBLEV's avatar
LDOUBLEV committed
161

162
        logger.debug(
LDOUBLEV's avatar
LDOUBLEV committed
163
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
164
        for text, score in rec_res:
165
            logger.debug("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
166

littletomatodonkey's avatar
littletomatodonkey committed
167
168
169
        res = [{
            "transcription": rec_res[idx][0],
            "points": np.array(dt_boxes[idx]).astype(np.int32).tolist(),
littletomatodonkey's avatar
littletomatodonkey committed
170
        } for idx in range(len(dt_boxes))]
littletomatodonkey's avatar
littletomatodonkey committed
171
172
173
174
        save_pred = os.path.basename(image_file) + "\t" + json.dumps(
            res, ensure_ascii=False) + "\n"
        save_results.append(save_pred)

LDOUBLEV's avatar
LDOUBLEV committed
175
176
177
178
179
180
        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
181
182
183
184
185
186
187
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
LDOUBLEV's avatar
LDOUBLEV committed
188
189
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
190
            cv2.imwrite(
191
                os.path.join(draw_img_save_dir, os.path.basename(image_file)),
dyning's avatar
dyning committed
192
                draw_img[:, :, ::-1])
193
194
            logger.debug("The visualized image saved in {}".format(
                os.path.join(draw_img_save_dir, os.path.basename(image_file))))
195

LDOUBLEV's avatar
LDOUBLEV committed
196
    logger.info("The predict total time is {}".format(time.time() - _st))
LDOUBLEV's avatar
LDOUBLEV committed
197
198
199
    if args.benchmark:
        text_sys.text_detector.autolog.report()
        text_sys.text_recognizer.autolog.report()
LDOUBLEV's avatar
LDOUBLEV committed
200

201
    with open(os.path.join(draw_img_save_dir, "system_results.txt"), 'w', encoding='utf-8') as f:
littletomatodonkey's avatar
littletomatodonkey committed
202
203
        f.writelines(save_results)

LDOUBLEV's avatar
LDOUBLEV committed
204

LDOUBLEV's avatar
LDOUBLEV committed
205
if __name__ == "__main__":
LDOUBLEV's avatar
LDOUBLEV committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)