predict_system.py 5.3 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
16
17
18
import os
import sys
__dir__ = os.path.dirname(__file__)
sys.path.append(__dir__)
sys.path.append(os.path.join(__dir__, '../..'))
LDOUBLEV's avatar
LDOUBLEV committed
19
20
21
22
23
24
25
26
27
28
import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
import predict_det
import predict_rec
import copy
import numpy as np
import math
import time
LDOUBLEV's avatar
LDOUBLEV committed
29
30
31
from ppocr.utils.utility import get_image_file_list
from PIL import Image
from tools.infer.utility import draw_ocr
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73


class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)

    def get_rotate_crop_image(self, img, points):
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
        img_crop_width = int(np.linalg.norm(points[0] - points[1]))
        img_crop_height = int(np.linalg.norm(points[0] - points[3]))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],\
            [img_crop_width, img_crop_height], [0, img_crop_height]])
        M = cv2.getPerspectiveTransform(points, pts_std)
        dst_img = cv2.warpPerspective(
            img_crop,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE)
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
            print(bno, rec_res[bno])

    def __call__(self, img):
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
        if dt_boxes is None:
            return None, None
        img_crop_list = []
74
75
76

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
77
78
79
80
81
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        rec_res, elapse = self.text_recognizer(img_crop_list)
82
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
LDOUBLEV's avatar
LDOUBLEV committed
83
84
85
        return dt_boxes, rec_res


86
87
88
89
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
90
        dt_boxes(array):detected text boxes with shape [4, 2]
91
92
93
94
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
95
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
96
97
98
99
100
101
102
103
104
105
106
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


LDOUBLEV's avatar
LDOUBLEV committed
107
108
if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
109
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
110
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
111
    is_visualize = True
LDOUBLEV's avatar
LDOUBLEV committed
112
113
114
115
116
117
118
119
120
121
122
123
124
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
        print("Predict time of %s: %.3fs" % (image_file, elapse))
        dt_num = len(dt_boxes)
        dt_boxes_final = []
        for dno in range(dt_num):
            text, score = rec_res[dno]
LDOUBLEV's avatar
LDOUBLEV committed
125
            if score >= 0.5:
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
                text_str = "%s, %.3f" % (text, score)
                print(text_str)
                dt_boxes_final.append(dt_boxes[dno])
LDOUBLEV's avatar
LDOUBLEV committed
129
130
131
132
133
134
135
136
137

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

            draw_img = draw_ocr(
                image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
138
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
139
140
141
142
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
dyning's avatar
dyning committed
143
                draw_img[:, :, ::-1])
144
145
            print("The visualized image saved in {}".format(
                os.path.join(draw_img_save, os.path.basename(image_file))))