predict_system.py 9.45 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import copy
import numpy as np
import time
WenmuZhou's avatar
WenmuZhou committed
27
import logging
LDOUBLEV's avatar
LDOUBLEV committed
28
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
29
30
31
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
32
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
33
34
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
LDOUBLEV's avatar
LDOUBLEV committed
35
36
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb
import tools.infer.benchmark_utils as benchmark_utils
WenmuZhou's avatar
WenmuZhou committed
37
38
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
39
40
41

class TextSystem(object):
    def __init__(self, args):
WenmuZhou's avatar
WenmuZhou committed
42
43
44
        if not args.show_log:
            logger.setLevel(logging.INFO)

LDOUBLEV's avatar
LDOUBLEV committed
45
46
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
47
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
48
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
49
50
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
51
52

    def get_rotate_crop_image(self, img, points):
53
        '''
LDOUBLEV's avatar
LDOUBLEV committed
54
55
56
57
58
59
60
61
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
62
        '''
LDOUBLEV's avatar
LDOUBLEV committed
63
64
65
66
67
68
69
70
71
        img_crop_width = int(
            max(
                np.linalg.norm(points[0] - points[1]),
                np.linalg.norm(points[2] - points[3])))
        img_crop_height = int(
            max(
                np.linalg.norm(points[0] - points[3]),
                np.linalg.norm(points[1] - points[2])))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
72
73
                              [img_crop_width, img_crop_height],
                              [0, img_crop_height]])
LDOUBLEV's avatar
LDOUBLEV committed
74
        M = cv2.getPerspectiveTransform(points, pts_std)
LDOUBLEV's avatar
LDOUBLEV committed
75
76
77
78
79
        dst_img = cv2.warpPerspective(
            img,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE,
            flags=cv2.INTER_CUBIC)
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
83
84
85
86
87
88
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
WenmuZhou's avatar
WenmuZhou committed
89
            logger.info(bno, rec_res[bno])
LDOUBLEV's avatar
LDOUBLEV committed
90

91
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
92
93
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
94

WenmuZhou's avatar
WenmuZhou committed
95
        logger.debug("dt_boxes num : {}, elapse : {}".format(
96

WenmuZhou's avatar
WenmuZhou committed
97
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
98
99
100
        if dt_boxes is None:
            return None, None
        img_crop_list = []
101
102
103

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
104
105
106
107
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
108
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
109
110
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
111
            logger.debug("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
112
113
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
114
        rec_res, elapse = self.text_recognizer(img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
115
        logger.debug("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
116
            len(rec_res), elapse))
117
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
WenmuZhou's avatar
WenmuZhou committed
118
119
120
121
122
123
124
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
125
126


127
128
129
130
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
131
        dt_boxes(array):detected text boxes with shape [4, 2]
132
133
134
135
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
136
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
137
138
139
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
WenmuZhou's avatar
WenmuZhou committed
140
141
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
142
143
144
145
146
147
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


148
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
149
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
150
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
151
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
152
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
153
    drop_score = args.drop_score
LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
157
158
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
162
        if img is None:
163
            logger.info("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
164
165
166
167
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
168
169
170
171
172
173
174
        total_time += elapse
        if args.benchmark and idx % 20 == 0:
            cm, gm, gu = get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1
LDOUBLEV's avatar
LDOUBLEV committed
175

LDOUBLEV's avatar
LDOUBLEV committed
176
177
        logger.info(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
178
179
        for text, score in rec_res:
            logger.info("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
180
181
182
183
184
185
186

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
187
188
189
190
191
192
193
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
194
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
195
196
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
197
198
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
199
200
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
dyning's avatar
dyning committed
201
                draw_img[:, :, ::-1])
WenmuZhou's avatar
WenmuZhou committed
202
            logger.info("The visualized image saved in {}".format(
203
                os.path.join(draw_img_save, os.path.basename(image_file))))
204

LDOUBLEV's avatar
LDOUBLEV committed
205
206
    logger.info("The predict total time is {}".format(time.time() - _st))
    logger.info("\nThe predict total time is {}".format(total_time))
207

LDOUBLEV's avatar
LDOUBLEV committed
208
209
210
211
212
213
214
    img_num = text_sys.text_detector.det_times.img_num
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
littletomatodonkey's avatar
littletomatodonkey committed
215
    else:
LDOUBLEV's avatar
LDOUBLEV committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
        mems = None
    det_time_dict = text_sys.text_detector.det_times.report(average=True)
    rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
    det_model_name = args.det_model_dir
    rec_model_name = args.rec_model_dir

    # construct det log information
    model_info = {
        'model_name': args.det_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': 1,
        'shape': 'dynamic_shape',
        'data_num': det_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': det_time_dict['preprocess_time'],
        'inference_time_s': det_time_dict['inference_time'],
        'postprocess_time_s': det_time_dict['postprocess_time'],
        'total_time_s': det_time_dict['total_time']
    }

    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_detector.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Det")

    # construct rec log information
    model_info = {
        'model_name': args.rec_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': args.rec_batch_num,
        'shape': 'dynamic_shape',
        'data_num': rec_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': rec_time_dict['preprocess_time'],
        'inference_time_s': rec_time_dict['inference_time'],
        'postprocess_time_s': rec_time_dict['postprocess_time'],
        'total_time_s': rec_time_dict['total_time']
    }
    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Rec")


if __name__ == "__main__":
    main(utility.parse_args())