predict_system.py 6.58 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
16
__dir__ = os.path.dirname(os.path.abspath(__file__))
17
sys.path.append(__dir__)
18
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
19

LDOUBLEV's avatar
LDOUBLEV committed
20
21
22
23
import cv2
import copy
import numpy as np
import time
LDOUBLEV's avatar
LDOUBLEV committed
24
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
25
26
27
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
28
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
29
30
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
31
from tools.infer.utility import draw_ocr_box_txt
LDOUBLEV's avatar
LDOUBLEV committed
32
33
34
35
36
37


class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
38
39
40
        self.use_angle_cls = args.use_angle_cls
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
41
42

    def get_rotate_crop_image(self, img, points):
43
        '''
LDOUBLEV's avatar
LDOUBLEV committed
44
45
46
47
48
49
50
51
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
52
        '''
LDOUBLEV's avatar
LDOUBLEV committed
53
54
55
56
57
58
59
60
61
        img_crop_width = int(
            max(
                np.linalg.norm(points[0] - points[1]),
                np.linalg.norm(points[2] - points[3])))
        img_crop_height = int(
            max(
                np.linalg.norm(points[0] - points[3]),
                np.linalg.norm(points[1] - points[2])))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],
62
63
                              [img_crop_width, img_crop_height],
                              [0, img_crop_height]])
LDOUBLEV's avatar
LDOUBLEV committed
64
        M = cv2.getPerspectiveTransform(points, pts_std)
LDOUBLEV's avatar
LDOUBLEV committed
65
66
67
68
69
        dst_img = cv2.warpPerspective(
            img,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE,
            flags=cv2.INTER_CUBIC)
LDOUBLEV's avatar
LDOUBLEV committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
            print(bno, rec_res[bno])

    def __call__(self, img):
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
84
        print("dt_boxes num : {}, elapse : {}".format(len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
85
86
87
        if dt_boxes is None:
            return None, None
        img_crop_list = []
88
89
90

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
91
92
93
94
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
WenmuZhou's avatar
WenmuZhou committed
95
96
97
98
99
100
101
102
103
            cv2.imwrite(
                '/home/zhoujun20/dygraph/PaddleOCR_rc/inference_results/{}.jpg'.
                format(bno), img_crop)
        if self.use_angle_cls:
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
            print("cls num  : {}, elapse : {}".format(
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
104
        rec_res, elapse = self.text_recognizer(img_crop_list)
105
        print("rec_res num  : {}, elapse : {}".format(len(rec_res), elapse))
106
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
LDOUBLEV's avatar
LDOUBLEV committed
107
108
109
        return dt_boxes, rec_res


110
111
112
113
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
114
        dt_boxes(array):detected text boxes with shape [4, 2]
115
116
117
118
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
119
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
120
121
122
123
124
125
126
127
128
129
130
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


131
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
132
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
133
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
134
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
135
    font_path = args.vis_font_path
LDOUBLEV's avatar
LDOUBLEV committed
136
    for image_file in image_file_list:
LDOUBLEV's avatar
LDOUBLEV committed
137
138
139
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
140
141
142
143
144
145
146
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
        print("Predict time of %s: %.3fs" % (image_file, elapse))
LDOUBLEV's avatar
LDOUBLEV committed
147
148

        drop_score = 0.5
LDOUBLEV's avatar
LDOUBLEV committed
149
150
151
        dt_num = len(dt_boxes)
        for dno in range(dt_num):
            text, score = rec_res[dno]
LDOUBLEV's avatar
LDOUBLEV committed
152
            if score >= drop_score:
LDOUBLEV's avatar
LDOUBLEV committed
153
154
                text_str = "%s, %.3f" % (text, score)
                print(text_str)
LDOUBLEV's avatar
LDOUBLEV committed
155
156
157
158
159
160
161

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
162
163
164
165
166
167
168
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
169
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
dyning's avatar
dyning committed
174
                draw_img[:, :, ::-1])
175
176
            print("The visualized image saved in {}".format(
                os.path.join(draw_img_save, os.path.basename(image_file))))
177
178
179


if __name__ == "__main__":
WenmuZhou's avatar
WenmuZhou committed
180
    logger = get_logger()
181
    main(utility.parse_args())