"git@developer.sourcefind.cn:sugon_wxj/megatron-lm.git" did not exist on "951ef3aedea88dfbbdf34d0dec17624883693367"
predict_system.py 8.06 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
WenmuZhou's avatar
WenmuZhou committed
16

17
__dir__ = os.path.dirname(os.path.abspath(__file__))
18
sys.path.append(__dir__)
19
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
20

21
22
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
23
24
25
26
import cv2
import copy
import numpy as np
import time
LDOUBLEV's avatar
LDOUBLEV committed
27
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
28
29
30
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
31
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
32
33
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
34
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb, get_rotate_crop_image
LDOUBLEV's avatar
LDOUBLEV committed
35
import tools.infer.benchmark_utils as benchmark_utils
WenmuZhou's avatar
WenmuZhou committed
36
37
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
38
39
40
41
42

class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
43
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
44
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
45
46
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
47
48
49
50
51

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
WenmuZhou's avatar
WenmuZhou committed
52
            logger.info(bno, rec_res[bno])
LDOUBLEV's avatar
LDOUBLEV committed
53

54
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
55
56
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
57

58
        logger.info("dt_boxes num : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
59
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
60
61
62
        if dt_boxes is None:
            return None, None
        img_crop_list = []
63
64
65

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
66
67
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
WenmuZhou's avatar
WenmuZhou committed
68
            img_crop = get_rotate_crop_image(ori_im, tmp_box)
LDOUBLEV's avatar
LDOUBLEV committed
69
            img_crop_list.append(img_crop)
70
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
71
72
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
73
            logger.info("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
74
75
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
76
        rec_res, elapse = self.text_recognizer(img_crop_list)
77
        logger.info("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
78
            len(rec_res), elapse))
79
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
WenmuZhou's avatar
WenmuZhou committed
80
81
82
83
84
85
86
        filter_boxes, filter_rec_res = [], []
        for box, rec_reuslt in zip(dt_boxes, rec_res):
            text, score = rec_reuslt
            if score >= self.drop_score:
                filter_boxes.append(box)
                filter_rec_res.append(rec_reuslt)
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
87
88


89
90
91
92
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
93
        dt_boxes(array):detected text boxes with shape [4, 2]
94
95
96
97
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
98
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
99
100
101
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
WenmuZhou's avatar
WenmuZhou committed
102
103
        if abs(_boxes[i + 1][0][1] - _boxes[i][0][1]) < 10 and \
                (_boxes[i + 1][0][0] < _boxes[i][0][0]):
104
105
106
107
108
109
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


110
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
111
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
112
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
113
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
114
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
115
    drop_score = args.drop_score
LDOUBLEV's avatar
LDOUBLEV committed
116
117
118
119
120
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
121
122
123
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
124
        if img is None:
125
            logger.info("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
130
131
132
133
134
135
136
        total_time += elapse
        if args.benchmark and idx % 20 == 0:
            cm, gm, gu = get_current_memory_mb(0)
            cpu_mem += cm
            gpu_mem += gm
            gpu_util += gu
            count += 1
LDOUBLEV's avatar
LDOUBLEV committed
137

LDOUBLEV's avatar
LDOUBLEV committed
138
139
        logger.info(
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
140
141
        for text, score in rec_res:
            logger.info("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
142
143
144
145
146
147
148

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
149
150
151
152
153
154
155
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
156
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
157
158
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
LDOUBLEV's avatar
LDOUBLEV committed
159
160
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
161
162
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
dyning's avatar
dyning committed
163
                draw_img[:, :, ::-1])
WenmuZhou's avatar
WenmuZhou committed
164
            logger.info("The visualized image saved in {}".format(
165
                os.path.join(draw_img_save, os.path.basename(image_file))))
166

LDOUBLEV's avatar
LDOUBLEV committed
167
168
    logger.info("The predict total time is {}".format(time.time() - _st))
    logger.info("\nThe predict total time is {}".format(total_time))
169

LDOUBLEV's avatar
LDOUBLEV committed
170
171
172
173
174
175
176
    img_num = text_sys.text_detector.det_times.img_num
    if args.benchmark:
        mems = {
            'cpu_rss_mb': cpu_mem / count,
            'gpu_rss_mb': gpu_mem / count,
            'gpu_util': gpu_util * 100 / count
        }
littletomatodonkey's avatar
littletomatodonkey committed
177
    else:
LDOUBLEV's avatar
LDOUBLEV committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
        mems = None
    det_time_dict = text_sys.text_detector.det_times.report(average=True)
    rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
    det_model_name = args.det_model_dir
    rec_model_name = args.rec_model_dir

    # construct det log information
    model_info = {
        'model_name': args.det_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': 1,
        'shape': 'dynamic_shape',
        'data_num': det_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': det_time_dict['preprocess_time'],
        'inference_time_s': det_time_dict['inference_time'],
        'postprocess_time_s': det_time_dict['postprocess_time'],
        'total_time_s': det_time_dict['total_time']
    }

    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_detector.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Det")

    # construct rec log information
    model_info = {
        'model_name': args.rec_model_dir.split('/')[-1],
        'precision': args.precision
    }
    data_info = {
        'batch_size': args.rec_batch_num,
        'shape': 'dynamic_shape',
        'data_num': rec_time_dict['img_num']
    }
    perf_info = {
        'preprocess_time_s': rec_time_dict['preprocess_time'],
        'inference_time_s': rec_time_dict['inference_time'],
        'postprocess_time_s': rec_time_dict['postprocess_time'],
        'total_time_s': rec_time_dict['total_time']
    }
    benchmark_log = benchmark_utils.PaddleInferBenchmark(
        text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
        args.save_log_path)
    benchmark_log("Rec")


if __name__ == "__main__":
    main(utility.parse_args())