predict_system.py 5.17 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import utility
from ppocr.utils.utility import initial_logger
logger = initial_logger()
import cv2
import predict_det
import predict_rec
import copy
import numpy as np
import math
import time
LDOUBLEV's avatar
LDOUBLEV committed
25
26
27
28
from ppocr.utils.utility import get_image_file_list
from PIL import Image
from tools.infer.utility import draw_ocr
import os
LDOUBLEV's avatar
LDOUBLEV committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70


class TextSystem(object):
    def __init__(self, args):
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)

    def get_rotate_crop_image(self, img, points):
        img_height, img_width = img.shape[0:2]
        left = int(np.min(points[:, 0]))
        right = int(np.max(points[:, 0]))
        top = int(np.min(points[:, 1]))
        bottom = int(np.max(points[:, 1]))
        img_crop = img[top:bottom, left:right, :].copy()
        points[:, 0] = points[:, 0] - left
        points[:, 1] = points[:, 1] - top
        img_crop_width = int(np.linalg.norm(points[0] - points[1]))
        img_crop_height = int(np.linalg.norm(points[0] - points[3]))
        pts_std = np.float32([[0, 0], [img_crop_width, 0],\
            [img_crop_width, img_crop_height], [0, img_crop_height]])
        M = cv2.getPerspectiveTransform(points, pts_std)
        dst_img = cv2.warpPerspective(
            img_crop,
            M, (img_crop_width, img_crop_height),
            borderMode=cv2.BORDER_REPLICATE)
        dst_img_height, dst_img_width = dst_img.shape[0:2]
        if dst_img_height * 1.0 / dst_img_width >= 1.5:
            dst_img = np.rot90(dst_img)
        return dst_img

    def print_draw_crop_rec_res(self, img_crop_list, rec_res):
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
            cv2.imwrite("./output/img_crop_%d.jpg" % bno, img_crop_list[bno])
            print(bno, rec_res[bno])

    def __call__(self, img):
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
        if dt_boxes is None:
            return None, None
        img_crop_list = []
71
72
73

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
74
75
76
77
78
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
            img_crop = self.get_rotate_crop_image(ori_im, tmp_box)
            img_crop_list.append(img_crop)
        rec_res, elapse = self.text_recognizer(img_crop_list)
79
        # self.print_draw_crop_rec_res(img_crop_list, rec_res)
LDOUBLEV's avatar
LDOUBLEV committed
80
81
82
        return dt_boxes, rec_res


83
84
85
86
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
87
        dt_boxes(array):detected text boxes with shape [4, 2]
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
    sorted_boxes = sorted(dt_boxes, key=lambda x: x[0][1])
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
        if abs(_boxes[i+1][0][1] - _boxes[i][0][1]) < 10 and \
            (_boxes[i + 1][0][0] < _boxes[i][0][0]):
            tmp = _boxes[i]
            _boxes[i] = _boxes[i + 1]
            _boxes[i + 1] = tmp
    return _boxes


LDOUBLEV's avatar
LDOUBLEV committed
104
105
if __name__ == "__main__":
    args = utility.parse_args()
LDOUBLEV's avatar
LDOUBLEV committed
106
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
107
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
108
    is_visualize = True
LDOUBLEV's avatar
LDOUBLEV committed
109
110
111
112
113
114
115
116
117
118
119
120
121
    for image_file in image_file_list:
        img = cv2.imread(image_file)
        if img is None:
            logger.info("error in loading image:{}".format(image_file))
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
        print("Predict time of %s: %.3fs" % (image_file, elapse))
        dt_num = len(dt_boxes)
        dt_boxes_final = []
        for dno in range(dt_num):
            text, score = rec_res[dno]
LDOUBLEV's avatar
LDOUBLEV committed
122
            if score >= 0.5:
LDOUBLEV's avatar
LDOUBLEV committed
123
124
125
                text_str = "%s, %.3f" % (text, score)
                print(text_str)
                dt_boxes_final.append(dt_boxes[dno])
LDOUBLEV's avatar
LDOUBLEV committed
126
127
128
129
130
131
132
133
134

        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

            draw_img = draw_ocr(
                image, boxes, txts, scores, draw_txt=True, drop_score=0.5)
135
            draw_img_save = "./inference_results/"
LDOUBLEV's avatar
LDOUBLEV committed
136
137
138
139
            if not os.path.exists(draw_img_save):
                os.makedirs(draw_img_save)
            cv2.imwrite(
                os.path.join(draw_img_save, os.path.basename(image_file)),
LDOUBLEV's avatar
LDOUBLEV committed
140
                draw_img[:, :, -1])
141
142
            print("The visualized image saved in {}".format(
                os.path.join(draw_img_save, os.path.basename(image_file))))