predict_system.py 7.87 KB
Newer Older
LDOUBLEV's avatar
LDOUBLEV committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
15
import os
import sys
LDOUBLEV's avatar
LDOUBLEV committed
16
import subprocess
WenmuZhou's avatar
WenmuZhou committed
17

18
__dir__ = os.path.dirname(os.path.abspath(__file__))
19
sys.path.append(__dir__)
littletomatodonkey's avatar
littletomatodonkey committed
20
sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '../..')))
LDOUBLEV's avatar
LDOUBLEV committed
21

22
23
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'

LDOUBLEV's avatar
LDOUBLEV committed
24
25
26
import cv2
import copy
import numpy as np
littletomatodonkey's avatar
littletomatodonkey committed
27
import json
LDOUBLEV's avatar
LDOUBLEV committed
28
import time
WenmuZhou's avatar
WenmuZhou committed
29
import logging
LDOUBLEV's avatar
LDOUBLEV committed
30
from PIL import Image
WenmuZhou's avatar
WenmuZhou committed
31
32
33
import tools.infer.utility as utility
import tools.infer.predict_rec as predict_rec
import tools.infer.predict_det as predict_det
WenmuZhou's avatar
WenmuZhou committed
34
import tools.infer.predict_cls as predict_cls
WenmuZhou's avatar
WenmuZhou committed
35
36
from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger
WenmuZhou's avatar
WenmuZhou committed
37
from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
WenmuZhou's avatar
WenmuZhou committed
38
39
logger = get_logger()

LDOUBLEV's avatar
LDOUBLEV committed
40
41
42

class TextSystem(object):
    def __init__(self, args):
WenmuZhou's avatar
WenmuZhou committed
43
44
45
        if not args.show_log:
            logger.setLevel(logging.INFO)

LDOUBLEV's avatar
LDOUBLEV committed
46
47
        self.text_detector = predict_det.TextDetector(args)
        self.text_recognizer = predict_rec.TextRecognizer(args)
WenmuZhou's avatar
WenmuZhou committed
48
        self.use_angle_cls = args.use_angle_cls
WenmuZhou's avatar
WenmuZhou committed
49
        self.drop_score = args.drop_score
WenmuZhou's avatar
WenmuZhou committed
50
51
        if self.use_angle_cls:
            self.text_classifier = predict_cls.TextClassifier(args)
LDOUBLEV's avatar
LDOUBLEV committed
52

53
54
55
56
57
        self.args = args
        self.crop_image_res_index = 0

    def draw_crop_rec_res(self, output_dir, img_crop_list, rec_res):
        os.makedirs(output_dir, exist_ok=True)
LDOUBLEV's avatar
LDOUBLEV committed
58
59
        bbox_num = len(img_crop_list)
        for bno in range(bbox_num):
60
61
62
63
64
65
            cv2.imwrite(
                os.path.join(output_dir,
                             f"mg_crop_{bno+self.crop_image_res_index}.jpg"),
                img_crop_list[bno])
            logger.debug(f"{bno}, {rec_res[bno]}")
        self.crop_image_res_index += bbox_num
LDOUBLEV's avatar
LDOUBLEV committed
66

67
    def __call__(self, img, cls=True):
LDOUBLEV's avatar
LDOUBLEV committed
68
69
        ori_im = img.copy()
        dt_boxes, elapse = self.text_detector(img)
LDOUBLEV's avatar
LDOUBLEV committed
70

WenmuZhou's avatar
WenmuZhou committed
71
        logger.debug("dt_boxes num : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
72
            len(dt_boxes), elapse))
LDOUBLEV's avatar
LDOUBLEV committed
73
74
75
        if dt_boxes is None:
            return None, None
        img_crop_list = []
76
77
78

        dt_boxes = sorted_boxes(dt_boxes)

LDOUBLEV's avatar
LDOUBLEV committed
79
80
        for bno in range(len(dt_boxes)):
            tmp_box = copy.deepcopy(dt_boxes[bno])
WenmuZhou's avatar
WenmuZhou committed
81
            img_crop = get_rotate_crop_image(ori_im, tmp_box)
LDOUBLEV's avatar
LDOUBLEV committed
82
            img_crop_list.append(img_crop)
83
        if self.use_angle_cls and cls:
WenmuZhou's avatar
WenmuZhou committed
84
85
            img_crop_list, angle_list, elapse = self.text_classifier(
                img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
86
            logger.debug("cls num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
87
88
                len(img_crop_list), elapse))

LDOUBLEV's avatar
LDOUBLEV committed
89
        rec_res, elapse = self.text_recognizer(img_crop_list)
WenmuZhou's avatar
WenmuZhou committed
90
        logger.debug("rec_res num  : {}, elapse : {}".format(
WenmuZhou's avatar
WenmuZhou committed
91
            len(rec_res), elapse))
92
93
94
        if self.args.save_crop_res:
            self.draw_crop_rec_res(self.args.crop_res_save_dir, img_crop_list,
                                   rec_res)
WenmuZhou's avatar
WenmuZhou committed
95
        filter_boxes, filter_rec_res = [], []
littletomatodonkey's avatar
littletomatodonkey committed
96
97
        for box, rec_result in zip(dt_boxes, rec_res):
            text, score = rec_result
WenmuZhou's avatar
WenmuZhou committed
98
99
            if score >= self.drop_score:
                filter_boxes.append(box)
littletomatodonkey's avatar
littletomatodonkey committed
100
                filter_rec_res.append(rec_result)
WenmuZhou's avatar
WenmuZhou committed
101
        return filter_boxes, filter_rec_res
LDOUBLEV's avatar
LDOUBLEV committed
102
103


104
105
106
107
def sorted_boxes(dt_boxes):
    """
    Sort text boxes in order from top to bottom, left to right
    args:
tink2123's avatar
tink2123 committed
108
        dt_boxes(array):detected text boxes with shape [4, 2]
109
110
111
112
    return:
        sorted boxes(array) with shape [4, 2]
    """
    num_boxes = dt_boxes.shape[0]
113
    sorted_boxes = sorted(dt_boxes, key=lambda x: (x[0][1], x[0][0]))
114
115
116
    _boxes = list(sorted_boxes)

    for i in range(num_boxes - 1):
jyn47's avatar
jyn47 committed
117
118
119
120
121
122
123
124
        for j in range(i, 0, -1):
            if abs(_boxes[j + 1][0][1] - _boxes[j][0][1]) < 20 and \
                    (_boxes[j + 1][0][0] < _boxes[j][0][0]):
                tmp = _boxes[j]
                _boxes[j] = _boxes[j + 1]
                _boxes[j + 1] = tmp
            else:
                break
125
126
127
    return _boxes


128
def main(args):
LDOUBLEV's avatar
LDOUBLEV committed
129
    image_file_list = get_image_file_list(args.image_dir)
LDOUBLEV's avatar
LDOUBLEV committed
130
    image_file_list = image_file_list[args.process_id::args.total_process_num]
LDOUBLEV's avatar
LDOUBLEV committed
131
    text_sys = TextSystem(args)
LDOUBLEV's avatar
LDOUBLEV committed
132
    is_visualize = True
WenmuZhou's avatar
WenmuZhou committed
133
    font_path = args.vis_font_path
WenmuZhou's avatar
WenmuZhou committed
134
    drop_score = args.drop_score
littletomatodonkey's avatar
littletomatodonkey committed
135
136
137
    draw_img_save_dir = args.draw_img_save_dir
    os.makedirs(draw_img_save_dir, exist_ok=True)
    save_results = []
Double_V's avatar
Double_V committed
138

xiaoting's avatar
xiaoting committed
139
140
141
    logger.info("In PP-OCRv3, rec_image_shape parameter defaults to '3, 48, 320', "
                "if you are using recognition model with PP-OCRv2 or an older version, please set --rec_image_shape='3,32,320")
                
LDOUBLEV's avatar
LDOUBLEV committed
142
143
144
145
146
    # warm up 10 times
    if args.warmup:
        img = np.random.uniform(0, 255, [640, 640, 3]).astype(np.uint8)
        for i in range(10):
            res = text_sys(img)
WenmuZhou's avatar
WenmuZhou committed
147

LDOUBLEV's avatar
LDOUBLEV committed
148
149
150
151
152
    total_time = 0
    cpu_mem, gpu_mem, gpu_util = 0, 0, 0
    _st = time.time()
    count = 0
    for idx, image_file in enumerate(image_file_list):
LDOUBLEV's avatar
LDOUBLEV committed
153

LDOUBLEV's avatar
LDOUBLEV committed
154
155
156
        img, flag = check_and_read_gif(image_file)
        if not flag:
            img = cv2.imread(image_file)
LDOUBLEV's avatar
LDOUBLEV committed
157
        if img is None:
158
            logger.debug("error in loading image:{}".format(image_file))
LDOUBLEV's avatar
LDOUBLEV committed
159
160
161
162
            continue
        starttime = time.time()
        dt_boxes, rec_res = text_sys(img)
        elapse = time.time() - starttime
LDOUBLEV's avatar
LDOUBLEV committed
163
        total_time += elapse
LDOUBLEV's avatar
LDOUBLEV committed
164

165
        logger.debug(
LDOUBLEV's avatar
LDOUBLEV committed
166
            str(idx) + "  Predict time of %s: %.3fs" % (image_file, elapse))
WenmuZhou's avatar
WenmuZhou committed
167
        for text, score in rec_res:
168
            logger.debug("{}, {:.3f}".format(text, score))
LDOUBLEV's avatar
LDOUBLEV committed
169

littletomatodonkey's avatar
littletomatodonkey committed
170
171
172
        res = [{
            "transcription": rec_res[idx][0],
            "points": np.array(dt_boxes[idx]).astype(np.int32).tolist(),
littletomatodonkey's avatar
littletomatodonkey committed
173
        } for idx in range(len(dt_boxes))]
littletomatodonkey's avatar
littletomatodonkey committed
174
175
176
177
        save_pred = os.path.basename(image_file) + "\t" + json.dumps(
            res, ensure_ascii=False) + "\n"
        save_results.append(save_pred)

LDOUBLEV's avatar
LDOUBLEV committed
178
179
180
181
182
183
        if is_visualize:
            image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            txts = [rec_res[i][0] for i in range(len(rec_res))]
            scores = [rec_res[i][1] for i in range(len(rec_res))]

WenmuZhou's avatar
WenmuZhou committed
184
185
186
187
188
189
190
            draw_img = draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=drop_score,
                font_path=font_path)
LDOUBLEV's avatar
LDOUBLEV committed
191
192
            if flag:
                image_file = image_file[:-3] + "png"
LDOUBLEV's avatar
LDOUBLEV committed
193
            cv2.imwrite(
194
                os.path.join(draw_img_save_dir, os.path.basename(image_file)),
dyning's avatar
dyning committed
195
                draw_img[:, :, ::-1])
196
197
            logger.debug("The visualized image saved in {}".format(
                os.path.join(draw_img_save_dir, os.path.basename(image_file))))
198

LDOUBLEV's avatar
LDOUBLEV committed
199
    logger.info("The predict total time is {}".format(time.time() - _st))
LDOUBLEV's avatar
LDOUBLEV committed
200
201
202
    if args.benchmark:
        text_sys.text_detector.autolog.report()
        text_sys.text_recognizer.autolog.report()
LDOUBLEV's avatar
LDOUBLEV committed
203

204
    with open(os.path.join(draw_img_save_dir, "system_results.txt"), 'w', encoding='utf-8') as f:
littletomatodonkey's avatar
littletomatodonkey committed
205
206
        f.writelines(save_results)

LDOUBLEV's avatar
LDOUBLEV committed
207

LDOUBLEV's avatar
LDOUBLEV committed
208
if __name__ == "__main__":
LDOUBLEV's avatar
LDOUBLEV committed
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    args = utility.parse_args()
    if args.use_mp:
        p_list = []
        total_process_num = args.total_process_num
        for process_id in range(total_process_num):
            cmd = [sys.executable, "-u"] + sys.argv + [
                "--process_id={}".format(process_id),
                "--use_mp={}".format(False)
            ]
            p = subprocess.Popen(cmd, stdout=sys.stdout, stderr=sys.stdout)
            p_list.append(p)
        for p in p_list:
            p.wait()
    else:
        main(args)