ocr_rec.cpp 6.8 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {
WenmuZhou's avatar
WenmuZhou committed
18
19

void CRNNRecognizer::Run(std::vector<cv::Mat> img_list,
WenmuZhou's avatar
WenmuZhou committed
20
21
                         std::vector<std::string> &rec_texts,
                         std::vector<float> &rec_text_scores,
WenmuZhou's avatar
WenmuZhou committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
                         std::vector<double> *times) {
  std::chrono::duration<float> preprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> inference_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();
  std::chrono::duration<float> postprocess_diff =
      std::chrono::steady_clock::now() - std::chrono::steady_clock::now();

  int img_num = img_list.size();
  std::vector<float> width_list;
  for (int i = 0; i < img_num; i++) {
    width_list.push_back(float(img_list[i].cols) / img_list[i].rows);
  }
  std::vector<int> indices = Utility::argsort(width_list);

  for (int beg_img_no = 0; beg_img_no < img_num;
       beg_img_no += this->rec_batch_num_) {
    auto preprocess_start = std::chrono::steady_clock::now();
    int end_img_no = min(img_num, beg_img_no + this->rec_batch_num_);
    float max_wh_ratio = 0;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      int h = img_list[indices[ino]].rows;
      int w = img_list[indices[ino]].cols;
      float wh_ratio = w * 1.0 / h;
      max_wh_ratio = max(max_wh_ratio, wh_ratio);
MissPenguin's avatar
MissPenguin committed
47
    }
WenmuZhou's avatar
WenmuZhou committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    int batch_width = 0;
    std::vector<cv::Mat> norm_img_batch;
    for (int ino = beg_img_no; ino < end_img_no; ino++) {
      cv::Mat srcimg;
      img_list[indices[ino]].copyTo(srcimg);
      cv::Mat resize_img;
      this->resize_op_.Run(srcimg, resize_img, max_wh_ratio,
                           this->use_tensorrt_);
      this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                              this->is_scale_);
      norm_img_batch.push_back(resize_img);
      batch_width = max(resize_img.cols, batch_width);
    }

    std::vector<float> input(this->rec_batch_num_ * 3 * 32 * batch_width, 0.0f);
    this->permute_op_.Run(norm_img_batch, input.data());
    auto preprocess_end = std::chrono::steady_clock::now();
    preprocess_diff += preprocess_end - preprocess_start;

    // Inference.
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({this->rec_batch_num_, 3, 32, batch_width});
    auto inference_start = std::chrono::steady_clock::now();
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();

    std::vector<float> predict_batch;
    auto output_names = this->predictor_->GetOutputNames();
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
    auto predict_shape = output_t->shape();

    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                  std::multiplies<int>());
    predict_batch.resize(out_num);

    output_t->CopyToCpu(predict_batch.data());
    auto inference_end = std::chrono::steady_clock::now();
    inference_diff += inference_end - inference_start;

    // ctc decode
    auto postprocess_start = std::chrono::steady_clock::now();
    for (int m = 0; m < predict_shape[0]; m++) {
WenmuZhou's avatar
WenmuZhou committed
91
      std::string str_res;
WenmuZhou's avatar
WenmuZhou committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
      int argmax_idx;
      int last_index = 0;
      float score = 0.f;
      int count = 0;
      float max_value = 0.0f;

      for (int n = 0; n < predict_shape[1]; n++) {
        argmax_idx = int(Utility::argmax(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));
        max_value = float(*std::max_element(
            &predict_batch[(m * predict_shape[1] + n) * predict_shape[2]],
            &predict_batch[(m * predict_shape[1] + n + 1) * predict_shape[2]]));

        if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
          score += max_value;
          count += 1;
WenmuZhou's avatar
WenmuZhou committed
109
          str_res += label_list_[argmax_idx];
MissPenguin's avatar
MissPenguin committed
110
        }
WenmuZhou's avatar
WenmuZhou committed
111
112
113
        last_index = argmax_idx;
      }
      score /= count;
WenmuZhou's avatar
WenmuZhou committed
114
      if (isnan(score)) {
WenmuZhou's avatar
WenmuZhou committed
115
116
        continue;
      }
WenmuZhou's avatar
WenmuZhou committed
117
118
      rec_texts[indices[beg_img_no + m]] = str_res;
      rec_text_scores[indices[beg_img_no + m]] = score;
WenmuZhou's avatar
WenmuZhou committed
119
    }
WenmuZhou's avatar
WenmuZhou committed
120
121
122
123
124
125
    auto postprocess_end = std::chrono::steady_clock::now();
    postprocess_diff += postprocess_end - postprocess_start;
  }
  times->push_back(double(preprocess_diff.count() * 1000));
  times->push_back(double(inference_diff.count() * 1000));
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
126
127
}

littletomatodonkey's avatar
littletomatodonkey committed
128
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
129
130
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
131
132
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
133

littletomatodonkey's avatar
littletomatodonkey committed
134
135
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
136
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
137
138
139
140
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
WenmuZhou's avatar
WenmuZhou committed
141
      if (this->precision_ == "int8") {
MissPenguin's avatar
MissPenguin committed
142
        precision = paddle_infer::Config::Precision::kInt8;
WenmuZhou's avatar
WenmuZhou committed
143
144
      }
      config.EnableTensorRtEngine(1 << 20, 10, 3, precision, false, false);
MissPenguin's avatar
MissPenguin committed
145

LDOUBLEV's avatar
LDOUBLEV committed
146
      std::map<std::string, std::vector<int>> min_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
147
          {"x", {1, 3, 32, 10}}, {"lstm_0.tmp_0", {10, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
148
      std::map<std::string, std::vector<int>> max_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
149
          {"x", {1, 3, 32, 2000}}, {"lstm_0.tmp_0", {1000, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
150
      std::map<std::string, std::vector<int>> opt_input_shape = {
WenmuZhou's avatar
WenmuZhou committed
151
          {"x", {1, 3, 32, 320}}, {"lstm_0.tmp_0", {25, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
152
153
154

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
155
    }
littletomatodonkey's avatar
littletomatodonkey committed
156
157
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
158
159
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
160
161
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
162
    }
littletomatodonkey's avatar
littletomatodonkey committed
163
164
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
165

LDOUBLEV's avatar
LDOUBLEV committed
166
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
167
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
168
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
169
170
171
172

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
WenmuZhou's avatar
WenmuZhou committed
173
  //   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
174

LDOUBLEV's avatar
LDOUBLEV committed
175
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
176
177
}

littletomatodonkey's avatar
littletomatodonkey committed
178
} // namespace PaddleOCR