ocr_rec.cpp 5.27 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

MissPenguin's avatar
MissPenguin committed
19
void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
littletomatodonkey's avatar
littletomatodonkey committed
20
21
22
23
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat resize_img;

MissPenguin's avatar
MissPenguin committed
24
  float wh_ratio = float(srcimg.cols) / float(srcimg.rows);
MissPenguin's avatar
MissPenguin committed
25
  auto preprocess_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
26
  this->resize_op_.Run(srcimg, resize_img, wh_ratio, this->use_tensorrt_);
littletomatodonkey's avatar
littletomatodonkey committed
27

MissPenguin's avatar
MissPenguin committed
28
29
30
31
32
33
  this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                          this->is_scale_);

  std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);

  this->permute_op_.Run(&resize_img, input.data());
MissPenguin's avatar
MissPenguin committed
34
  auto preprocess_end = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
35
36
37
38
39

  // Inference.
  auto input_names = this->predictor_->GetInputNames();
  auto input_t = this->predictor_->GetInputHandle(input_names[0]);
  input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
MissPenguin's avatar
update  
MissPenguin committed
40
  auto inference_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
41
42
43
44
45
46
47
48
49
50
51
52
53
  input_t->CopyFromCpu(input.data());
  this->predictor_->Run();

  std::vector<float> predict_batch;
  auto output_names = this->predictor_->GetOutputNames();
  auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
  auto predict_shape = output_t->shape();

  int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
                                std::multiplies<int>());
  predict_batch.resize(out_num);

  output_t->CopyToCpu(predict_batch.data());
MissPenguin's avatar
MissPenguin committed
54
  auto inference_end = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
55
56

  // ctc decode
MissPenguin's avatar
MissPenguin committed
57
  auto postprocess_start = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
  std::vector<std::string> str_res;
  int argmax_idx;
  int last_index = 0;
  float score = 0.f;
  int count = 0;
  float max_value = 0.0f;

  for (int n = 0; n < predict_shape[1]; n++) {
    argmax_idx =
        int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                            &predict_batch[(n + 1) * predict_shape[2]]));
    max_value =
        float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                &predict_batch[(n + 1) * predict_shape[2]]));

    if (argmax_idx > 0 && (!(n > 0 && argmax_idx == last_index))) {
      score += max_value;
      count += 1;
      str_res.push_back(label_list_[argmax_idx]);
WenmuZhou's avatar
WenmuZhou committed
77
    }
MissPenguin's avatar
MissPenguin committed
78
79
    last_index = argmax_idx;
  }
MissPenguin's avatar
update  
MissPenguin committed
80
  auto postprocess_end = std::chrono::steady_clock::now();
MissPenguin's avatar
MissPenguin committed
81
82
83
  score /= count;
  for (int i = 0; i < str_res.size(); i++) {
    std::cout << str_res[i];
littletomatodonkey's avatar
littletomatodonkey committed
84
  }
MissPenguin's avatar
MissPenguin committed
85
  std::cout << "\tscore: " << score << std::endl;
MissPenguin's avatar
MissPenguin committed
86
87
88
89
90
91
92

  std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() * 1000));
  std::chrono::duration<float> postprocess_diff = postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
littletomatodonkey's avatar
littletomatodonkey committed
93
94
}

littletomatodonkey's avatar
littletomatodonkey committed
95
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
96
97
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
98
99
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
100

littletomatodonkey's avatar
littletomatodonkey committed
101
102
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
103
    if (this->use_tensorrt_) {
MissPenguin's avatar
MissPenguin committed
104
105
106
107
108
109
110
      auto precision = paddle_infer::Config::Precision::kFloat32;
      if (this->precision_ == "fp16") {
        precision = paddle_infer::Config::Precision::kHalf;
      }
     if (this->precision_ == "int8") {
        precision = paddle_infer::Config::Precision::kInt8;
      } 
111
112
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
MissPenguin's avatar
MissPenguin committed
113
          precision,
114
          false, false);
MissPenguin's avatar
MissPenguin committed
115

LDOUBLEV's avatar
LDOUBLEV committed
116
      std::map<std::string, std::vector<int>> min_input_shape = {
MissPenguin's avatar
MissPenguin committed
117
118
          {"x", {1, 3, 32, 10}},
          {"lstm_0.tmp_0", {10, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
119
      std::map<std::string, std::vector<int>> max_input_shape = {
MissPenguin's avatar
MissPenguin committed
120
121
          {"x", {1, 3, 32, 2000}},
          {"lstm_0.tmp_0", {1000, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
122
      std::map<std::string, std::vector<int>> opt_input_shape = {
MissPenguin's avatar
MissPenguin committed
123
124
          {"x", {1, 3, 32, 320}},
          {"lstm_0.tmp_0", {25, 1, 96}}};
LDOUBLEV's avatar
LDOUBLEV committed
125
126
127

      config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                    opt_input_shape);
128
    }
littletomatodonkey's avatar
littletomatodonkey committed
129
130
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
131
132
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
133
134
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
135
    }
littletomatodonkey's avatar
littletomatodonkey committed
136
137
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
138

LDOUBLEV's avatar
LDOUBLEV committed
139
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
140
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
141
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
142
143
144
145

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
MissPenguin's avatar
MissPenguin committed
146
//   config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
147

LDOUBLEV's avatar
LDOUBLEV committed
148
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
149
150
}

littletomatodonkey's avatar
littletomatodonkey committed
151
} // namespace PaddleOCR