".github/vscode:/vscode.git/clone" did not exist on "4d2c981d551566961bbc7254ae9556d76dd95764"
ocr_rec.cpp 6.23 KB
Newer Older
littletomatodonkey's avatar
littletomatodonkey committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/ocr_rec.h>

namespace PaddleOCR {

void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
WenmuZhou's avatar
WenmuZhou committed
20
                         cv::Mat &img, Classifier *cls) {
littletomatodonkey's avatar
littletomatodonkey committed
21
22
23
24
25
26
27
28
  cv::Mat srcimg;
  img.copyTo(srcimg);
  cv::Mat crop_img;
  cv::Mat resize_img;

  std::cout << "The predicted text is :" << std::endl;
  int index = 0;
  for (int i = boxes.size() - 1; i >= 0; i--) {
littletomatodonkey's avatar
littletomatodonkey committed
29
    crop_img = GetRotateCropImage(srcimg, boxes[i]);
WenmuZhou's avatar
WenmuZhou committed
30
31
32
    if (cls != nullptr) {
      crop_img = cls->Run(crop_img);
    }
littletomatodonkey's avatar
littletomatodonkey committed
33
34
35
36
37
38
39
40

    float wh_ratio = float(crop_img.cols) / float(crop_img.rows);

    this->resize_op_.Run(crop_img, resize_img, wh_ratio);

    this->normalize_op_.Run(&resize_img, this->mean_, this->scale_,
                            this->is_scale_);

littletomatodonkey's avatar
littletomatodonkey committed
41
    std::vector<float> input(1 * 3 * resize_img.rows * resize_img.cols, 0.0f);
littletomatodonkey's avatar
littletomatodonkey committed
42

littletomatodonkey's avatar
littletomatodonkey committed
43
    this->permute_op_.Run(&resize_img, input.data());
littletomatodonkey's avatar
littletomatodonkey committed
44

45
    // Inference.
LDOUBLEV's avatar
LDOUBLEV committed
46
47
48
49
50
    auto input_names = this->predictor_->GetInputNames();
    auto input_t = this->predictor_->GetInputHandle(input_names[0]);
    input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
    input_t->CopyFromCpu(input.data());
    this->predictor_->Run();
littletomatodonkey's avatar
littletomatodonkey committed
51

WenmuZhou's avatar
WenmuZhou committed
52
    std::vector<float> predict_batch;
littletomatodonkey's avatar
littletomatodonkey committed
53
    auto output_names = this->predictor_->GetOutputNames();
LDOUBLEV's avatar
LDOUBLEV committed
54
    auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
WenmuZhou's avatar
WenmuZhou committed
55
    auto predict_shape = output_t->shape();
56

WenmuZhou's avatar
WenmuZhou committed
57
    int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
littletomatodonkey's avatar
littletomatodonkey committed
58
                                  std::multiplies<int>());
WenmuZhou's avatar
WenmuZhou committed
59
    predict_batch.resize(out_num);
littletomatodonkey's avatar
littletomatodonkey committed
60

LDOUBLEV's avatar
LDOUBLEV committed
61
    output_t->CopyToCpu(predict_batch.data());
littletomatodonkey's avatar
littletomatodonkey committed
62

WenmuZhou's avatar
WenmuZhou committed
63
64
    // ctc decode
    std::vector<std::string> str_res;
littletomatodonkey's avatar
littletomatodonkey committed
65
    int argmax_idx;
WenmuZhou's avatar
WenmuZhou committed
66
    int last_index = 0;
littletomatodonkey's avatar
littletomatodonkey committed
67
68
69
70
    float score = 0.f;
    int count = 0;
    float max_value = 0.0f;

WenmuZhou's avatar
WenmuZhou committed
71
    for (int n = 0; n < predict_shape[1]; n++) {
littletomatodonkey's avatar
littletomatodonkey committed
72
      argmax_idx =
WenmuZhou's avatar
WenmuZhou committed
73
74
          int(Utility::argmax(&predict_batch[n * predict_shape[2]],
                              &predict_batch[(n + 1) * predict_shape[2]]));
littletomatodonkey's avatar
littletomatodonkey committed
75
      max_value =
WenmuZhou's avatar
WenmuZhou committed
76
77
78
79
          float(*std::max_element(&predict_batch[n * predict_shape[2]],
                                  &predict_batch[(n + 1) * predict_shape[2]]));

      if (argmax_idx > 0 && (not(i > 0 && argmax_idx == last_index))) {
littletomatodonkey's avatar
littletomatodonkey committed
80
81
        score += max_value;
        count += 1;
WenmuZhou's avatar
WenmuZhou committed
82
        str_res.push_back(label_list_[argmax_idx]);
littletomatodonkey's avatar
littletomatodonkey committed
83
      }
WenmuZhou's avatar
WenmuZhou committed
84
      last_index = argmax_idx;
littletomatodonkey's avatar
littletomatodonkey committed
85
86
    }
    score /= count;
WenmuZhou's avatar
WenmuZhou committed
87
88
89
    for (int i = 0; i < str_res.size(); i++) {
      std::cout << str_res[i];
    }
littletomatodonkey's avatar
littletomatodonkey committed
90
91
92
93
    std::cout << "\tscore: " << score << std::endl;
  }
}

littletomatodonkey's avatar
littletomatodonkey committed
94
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
LDOUBLEV's avatar
LDOUBLEV committed
95
96
  //   AnalysisConfig config;
  paddle_infer::Config config;
WenmuZhou's avatar
WenmuZhou committed
97
98
  config.SetModel(model_dir + "/inference.pdmodel",
                  model_dir + "/inference.pdiparams");
littletomatodonkey's avatar
littletomatodonkey committed
99

littletomatodonkey's avatar
littletomatodonkey committed
100
101
  if (this->use_gpu_) {
    config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
102
103
104
105
106
107
108
    if (this->use_tensorrt_) {
      config.EnableTensorRtEngine(
          1 << 20, 10, 3,
          this->use_fp16_ ? paddle_infer::Config::Precision::kHalf
                          : paddle_infer::Config::Precision::kFloat32,
          false, false);
    }
littletomatodonkey's avatar
littletomatodonkey committed
109
110
  } else {
    config.DisableGpu();
littletomatodonkey's avatar
littletomatodonkey committed
111
112
    if (this->use_mkldnn_) {
      config.EnableMKLDNN();
WenmuZhou's avatar
WenmuZhou committed
113
114
      // cache 10 different shapes for mkldnn to avoid memory leak
      config.SetMkldnnCacheCapacity(10);
littletomatodonkey's avatar
littletomatodonkey committed
115
    }
littletomatodonkey's avatar
littletomatodonkey committed
116
117
    config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
  }
littletomatodonkey's avatar
littletomatodonkey committed
118

LDOUBLEV's avatar
LDOUBLEV committed
119
  config.SwitchUseFeedFetchOps(false);
littletomatodonkey's avatar
littletomatodonkey committed
120
  // true for multiple input
littletomatodonkey's avatar
littletomatodonkey committed
121
  config.SwitchSpecifyInputNames(true);
littletomatodonkey's avatar
littletomatodonkey committed
122
123
124
125

  config.SwitchIrOptim(true);

  config.EnableMemoryOptim();
littletomatodonkey's avatar
littletomatodonkey committed
126
  config.DisableGlogInfo();
littletomatodonkey's avatar
littletomatodonkey committed
127

LDOUBLEV's avatar
LDOUBLEV committed
128
  this->predictor_ = CreatePredictor(config);
littletomatodonkey's avatar
littletomatodonkey committed
129
130
}

littletomatodonkey's avatar
littletomatodonkey committed
131
132
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
                                           std::vector<std::vector<int>> box) {
littletomatodonkey's avatar
littletomatodonkey committed
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
  cv::Mat image;
  srcimage.copyTo(image);
  std::vector<std::vector<int>> points = box;

  int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
  int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
  int left = int(*std::min_element(x_collect, x_collect + 4));
  int right = int(*std::max_element(x_collect, x_collect + 4));
  int top = int(*std::min_element(y_collect, y_collect + 4));
  int bottom = int(*std::max_element(y_collect, y_collect + 4));

  cv::Mat img_crop;
  image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);

  for (int i = 0; i < points.size(); i++) {
    points[i][0] -= left;
    points[i][1] -= top;
  }

  int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
                                pow(points[0][1] - points[1][1], 2)));
  int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
                                 pow(points[0][1] - points[3][1], 2)));

  cv::Point2f pts_std[4];
  pts_std[0] = cv::Point2f(0., 0.);
  pts_std[1] = cv::Point2f(img_crop_width, 0.);
  pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
  pts_std[3] = cv::Point2f(0.f, img_crop_height);

  cv::Point2f pointsf[4];
  pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
  pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
  pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
  pointsf[3] = cv::Point2f(points[3][0], points[3][1]);

  cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);

  cv::Mat dst_img;
  cv::warpPerspective(img_crop, dst_img, M,
                      cv::Size(img_crop_width, img_crop_height),
                      cv::BORDER_REPLICATE);

  if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
    cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
    cv::transpose(dst_img, srcCopy);
    cv::flip(srcCopy, srcCopy, 0);
    return srcCopy;
  } else {
    return dst_img;
  }
}

WenmuZhou's avatar
WenmuZhou committed
186
} // namespace PaddleOCR